1000 resultados para Agglutinating activity
Resumo:
The globular C1q-domain-containing (C1qDC) proteins are a family of versatile pattern recognition receptors via their globular C1q (gC1q) domain to bind various ligands including several PAMPs on pathogens. In this study, a new gC1q-domain-containing protein (AiC1qDC-1) gene was cloned from Argopecten irradians by rapid amplification of cDNA ends (RACE) approaches and expressed sequence tag (EST) analysis. The full-length cDNA of AiC1qDC-1 was composed of 733 bp, encoding a signal peptide of 19 residues and a typical gC1q domain of 137 residues containing all eight invariant amino acids in human C1qDC proteins and seven aromatic residues essential for effective packing of the hydrophobic core of AiC1qDC-1. The gC1q domain of AiC1qDC-1, which possessed the typical 10-stranded beta-sandwich fold with a jelly-roll topology common to all C1q family members, showed high homology not only to those of Cl qDC proteins in mollusk but also to those of C1qDC proteins in human. The AiC1qDC-1 transcripts were mainly detected in the tissue of hepatopancreas and also marginally detectable in adductor, heart, mantle, gill and hemocytes by fluorescent quantitative real-time PCR. In the microbial challenge experiment, there was a significant up-regulation in the relative expression level of AiC1qDC-1 in hepatopancreas and hemocytes of the scallops challenged by fungi Pichia pastoris GS115, Gram-positive bacteria Micrococcus luteus and Gram-negative bacteria Listonella anguillarum. The recombinant AiC1qDC-1 (rAiC1qDC-1) protein displayed no obvious agglutination against M. luteus and L. anguillarum, but it aggregated P. pastoris remarkably. This agglutination could be inhibited by D-mannose and PGN but not by LPS, glucan or D-galactose. These results indicated that AiC1qDC-1 functioned as a pattern recognition receptor in the immune defense of scallops against pathogens and provided clues for illuminating the evolution of the complement classical pathway. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The C1q-domain-containing (C1qDC) proteins are a family of proteins characterized by a globular C1q (gC1q) domain in their C-terminus. They are involved in various processes of vertebrates and supposed to be an important pattern recognition receptor in innate immunity of invertebrates. In this study, a novel member of C1q-domain-containing protein family was identified from Zhikong scallop Chlamys farreri (designated as CfC1qDC) by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of CfC1qDC was of 777 bp, consisting of a T-terminal untranslated region (UTR) of 62 bp and a 3' UTR of 178 bp with a polyadenylation signal sequence AATAAA and a poly (A) tail. The CfC1qDC cDNA encoded a polypeptide of 178 amino acids, including a signal peptide and a C1q-domain of 158 amino acids with the theoretical isoelectric point of 5.19 and the predicted molecular weight of 17.2 kDa. The C1q-domain in CfC1qDC exhibited homology with those in sialic acid binding lectin from mollusks and C1qDC proteins from higher vertebrates. The typical 10 beta-strand jelly-roll folding topology structure of C1q-domain and the residues essential for effective packing of the hydrophobic core were well conserved in CfC1qDC. By fluorescent quantitative real-time PCR, mRNA transcripts of CfC1qDC were mainly detected in kidney, mantle, adductor muscle and gill, and also marginally detectable in hemocytes. In the bacterial challenge experiment, after the scallops were challenged by Listonella anguillarum, there was a significant up-regulation in the relative expression level of CfC1qDC and at 6 h post-injection, the mRNA expression reached the maximum level and was 4.55-fold higher than that of control scallops. Similarly, the expression of CfC1qDC mRNA in mixed primary cultures of hemocytes stimulated by lipopolysaccharides (LPS) was up-regulated and reached the maximum level at 6 h post-stimulation, and then dropped back to the original level gradually. In order to investigate its function, the cDNA fragment encoding the mature peptide of CfC1qDC was recombined and expressed in Escherichia coli BL21 (DE3). The recombinant CfC1qDC protein displayed a significantly strong activity to bind LIDS from E. coli, although no obvious antibacterial or agglutinating activity toward Gram-negative bacteria E. coli JM109, L. anguillarum and Gram-positive bacteria Micrococcus luteus was observed. These results suggested that CfC1qDC was absolutely a novel member of the C1qDC protein family and was involved in the recognition of invading microorganisms probably as a pattern recognition molecule in mollusk. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
C-type lectins are a superfamily of carbohydrate-recognition proteins which play crucial roles as pattern recognition receptors (PRRs) in the innate immunity. In this study, the full-length cDNA of a C-type lectin was cloned from scallop Chlamys farreri (designated as Cflec-5) by expression sequence tag (EST) analysis and rapid amplification of cDNA ends (RACE) approach The full-length cDNA of Cflec-5 was of 1412 bp. The open reading frame encoded a polypeptide of 153 amino acids, including a signal sequence and a conserved carbohydrate-recognition domain with the EPN motif determining the mannose-binding specificity The deduced amino acid sequence of Cflec-5 showed high similarity to members of C-type lectin superfamily. The quantitative real-time PCR was performed to investigate the tissue distribution of Cflec-5 mRNA and its temporal expression profiles in hemocytes post pathogen-associated molecular patterns (PAMPs) stimulation. In healthy scallops, the Cflec-5 mRNA was mainly detected in gill and mantle, and marginally in other tissues The mRNA expression of Cflec-5 could be significantly induced by lipopolysaccharide (LPS) and glucan stimulation and reached the maximum level at 6 h and 12 h, respectively But its expression level did not change significantly during peptidoglycan (PGN) stimulation The function of Cflec-5 was investigated by recombination and expression of the cDNA fragment encoding its mature peptide in Escherichia coli Rosetta Gami (DE3) The recombinant Cflec-5 agglutinated Pichia pastoris in a calcium-independent way The agglutinating activity could be inhibited by D-mannose. LPS and glucan, but not by D-galactose or PGN. These results collectively suggested that Cflec-5 was involved in the innate Immune response of scallops and might contribute to nonself-recognition through its interaction with various PAMPs (C) 2010 Elsevier Ltd All rights reserved
Resumo:
The family of fibrinogen-related proteins (FREPs) is a group of proteins with fibrinogen-like domains. Many members of this family play important roles as pattern recognition receptors in innate immune responses. The cDNA of bay scallop Argopecten irradians FREP (designated as AiFREP) was cloned by rapid amplification of cDNA ends (RACE) method based on the expressed sequence tag (EST). The full-length cDNA of AiFREP was of 990 bp. The open reading frame encoded a polypeptide of 251 amino acids, including a signal sequence and a 213 amino acids fibrinogen-like domain. The fibrinogen-like domain of AiFREP was highly similar to those of mammalian ficolins and other FREPs. The temporal expression of AiFREP mRNA in hemolymph was examined by fluorescent quantitative real-time PCR. The mRNA level of scallops challenged by Listonella anguillarum was significantly up-regulated, peaked to 9.39-fold at 9 h after stimulation, then dropped back to 4.37-fold at 12 h, while there was no significant change in the Micrococcus luteus challenged group in all periods of treatment. The function of AiFREP was investigated by recombination and expression of the cDNA fragment encoding its mature peptide in Escherichia coli Rosetta gami (DE3). The recombinant AiFREP (rAiFREP) agglutinated chicken erythrocytes and human A, B, O-type erythrocytes. The agglutinating activities were calcium-dependent and could be inhibited by acetyl group-containing carbohydrates. rAiFREP also agglutinated Gram-negative bacteria E. coli JM109, L anguillarum and Gram-positive bacteria M. luteus in the presence of calcium ions. These results collectively suggested that AiFREP functions as a pattern recognition receptor in the immune response of bay scallop and contributed to nonself recognition in invertebrates, which would also provide clues for elucidating the evolution of the lectin pathway of the complement system. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
C-type lectins are a superfamily of carbohydrate-recognition proteins which play crucial roles in the innate immunity. In this study, the gene of a C-type lectin with multiple carbohydrate-recognition domains (CRDs) from scallop Chlamys farreri (designated as Cflec-3) was cloned by rapid amplification of cDNA ends (RACE) approach based on expression sequence tag (EST) analysis. The full-length cDNA of Cflec-3 was of 2256 bp. The open reading frame encoded a polypeptide of 516 amino acids, including a signal sequence and three CRDs. The deduced amino acid sequence of Cflec-3 showed high similarity to members of C-type lectin superfamily. By fluorescent quantitative real-time PCR, the Cflec-3 mRNA was mainly detected in hepatopancreas, adductor, mantle, and marginally in gill, gonad and hemocytes of healthy scallops. After scallops were challenged by Listonella anguillarum, the mRNA level of Cflec-3 in hemocytes was up-regulated and was significantly higher than that of blank at 8 h and 12 h post-challenge. The function of Cflec-3 was investigated by recombination and expression of the cDNA fragment encoding its mature peptide in Escherichia coli BL21 (DE3)-pLysS. The recombined Cflec-3 (rCflec-3) agglutinated Gram-negative bacteria Pseudomonas stutzeri. The agglutinating activity was calcium-dependent and could be inhibited by D-mannose. These results collectively suggested that Cflec-3 was involved in the immune response against microbe infection and contributed to nonself-recognition and clearance of bacterial pathogens in scallop. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Cell surface proteins obtained by alkaline extraction from isolated cell walls of Mortierella pusilla and M. candelabrum, host and nonhost, respectively, to the mycoparasite, Piptocephalis virginiana, were tested for their ability to agglutinate mycoparasite spores. The host cell wall protein extract had a high agglutinating activity (788 a.u. mg- t ) as compared with the nonhost extract (21 a.li. mg- t ). SDS-polyacrylamide gel electrophoresis of the cell wall proteins revealed four protein bands, a, b, c, and d (Mr 117, 100, 85 and 64 kd, respectively) at the host surface, but not at the nonhost surface, except for the faint band c. Deletion of proteins b or c from the host cell wall protein extract significantly reduced its agglutinating activity. Proteins band c, obtained as purified preparations by a series of procedures, were shown to be two glycoproteins. Carbohydrate analysis by gas chromatography demonstrated that glucose and Nacetylglucosamine were the major carbohydrate components of the glycoproteins. It was further shown that the agglutinating activity of the pure preparation containing both band c was 500-850 times that of the single glycoproteins, suggesting the involvement of both glycoproteins in agglutination. The results suggest that the glycoproteins band c are the two subunits of agglutinin present at the host cell surface. The two glycoproteins band c purified from the host cell wall protein extract were further examined after various treatments for their possible role in agglutination, attachment and appressorium formation by the mycoparasite. Results obtained by agglutination and attachment tests showed: (1) the two glycoprotein-s are not only an agglutinin responsible for the mycoparasite spore agglutination, but may also serve as a receptor for the specific recognition, attachment and appressorium formation by the mycoparasite; (2) treatment of the rnycoparasite spores with various sugars revealed that arabinose, glucose and N-acetylglucosamine inhibited the agglutination and attachment activity of the glycoproteins, however, the relative percentage of appressorium formation was not affected by the above sugars; (3) the two glycoproteins are relatively stable with respect to their agglutinin and receptor functions. The present results suggest that the agglutination and attachment may be mediated directly by certain sugars present at the host and mycoparasite cell surfaces while the appressorlum formation may be the response of complementary combinations of both sugar and protein, the two parts of the glycoproteins at the interacting surfaces of two fungi.
Resumo:
The main problem faced by the shrimp industry are the infectious diseases. The hypodermal and hematopoietic necrosis infection (IHHN) is one of the major cause of disease in the cultured shrimp, Litopenaeus vannamei. Environmental changes involving water quality, oxygen concentration, salinity, temperature, stocking density, presence of pathogens, among others, triggering a stressing condition for the cultured shrimp, weakening them and allowing the outbreak of diseases. The stress on the animal leads to a change in the molecules immune response components, which can be used as indicators of shrimp health. Thus, the objective of the present study was to evaluate the effect of salinity, stocking density and IHHNV infection on the L. vannamei shrimp. The immune parameters used to check the shrimp health were the total hemocytes counts (THC), the agglutinating activity (AA) and the clotting time (CT) of the serum of shrimp. These parameters were analyzed in healthy and IHHNV-infected shrimp, grown in low (0-0.5 ), medium (19-24 ) and high (> 38 ) salinity, and extensive (7-12 cam.m-2), semi-intensive (15-25 cam.m-2) and intensive (33-45 cam.m -2) stocking density. The IHHNV infection rate was significantly higher in low salinity (P<0.005) and intensive density (P<0.005), both stressful conditions for L. vannamei. Low salinity significantly increased THC (P<0.05) and decreased and CT (P<0.05) in healthy and infected shrimp, but AA (P<0.05) significantly decreased in healthy shrimp at medium salinity. Culture intensification did not affect the THC, AA and CT of healthy and infected shrimp (P>0.05). The IHHNV infection did not affect any immune parameters of shrimp cultured at different salinities and stocking densities. It is necessary to emphasize that this study was conducted in shrimp grown in ponds, where several environmental factors are acting simultaneously. Thus, further studies are needed about the influence of other environmental factors on the immune parameters of shrimp cultured in pond
Resumo:
The main problem faced by the shrimp industry are the infectious diseases. The hypodermal and hematopoietic necrosis infection (IHHN) is one of the major cause of disease in the cultured shrimp, Litopenaeus vannamei. Environmental changes involving water quality, oxygen concentration, salinity, temperature, stocking density, presence of pathogens, among others, triggering a stressing condition for the cultured shrimp, weakening them and allowing the outbreak of diseases. The stress on the animal leads to a change in the molecules immune response components, which can be used as indicators of shrimp health. Thus, the objective of the present study was to evaluate the effect of salinity, stocking density and IHHNV infection on the L. vannamei shrimp. The immune parameters used to check the shrimp health were the total hemocytes counts (THC), the agglutinating activity (AA) and the clotting time (CT) of the serum of shrimp. These parameters were analyzed in healthy and IHHNV-infected shrimp, grown in low (0-0.5 ), medium (19-24 ) and high (> 38 ) salinity, and extensive (7-12 cam.m-2), semi-intensive (15-25 cam.m-2) and intensive (33-45 cam.m -2) stocking density. The IHHNV infection rate was significantly higher in low salinity (P<0.005) and intensive density (P<0.005), both stressful conditions for L. vannamei. Low salinity significantly increased THC (P<0.05) and decreased and CT (P<0.05) in healthy and infected shrimp, but AA (P<0.05) significantly decreased in healthy shrimp at medium salinity. Culture intensification did not affect the THC, AA and CT of healthy and infected shrimp (P>0.05). The IHHNV infection did not affect any immune parameters of shrimp cultured at different salinities and stocking densities. It is necessary to emphasize that this study was conducted in shrimp grown in ponds, where several environmental factors are acting simultaneously. Thus, further studies are needed about the influence of other environmental factors on the immune parameters of shrimp cultured in pond
Resumo:
Haemolymph, heads, salivary glands, crops, midguts, hindguts, and Malpighian tubules from Rhodnius prolixus and Triatoma infestans were extracted in phosphate or Tris buffer saline with calcium, and tested for agglutination and lytic activities by microtitration against both vertebrateerythrocytes and cultured epimatigote forms of Trypanosoma rangeli. Haemagglutination activity against rabbit erythrocytes was found in the crop, midgut and hindgut extracts of T. infestans but only in the haemolymph of R. prolixus. Higher titres of parasite agglutinins were found in R. prolixus haemolymph than T. infestans, whilst the converse occurred for the tissue extracts. In addition, the extracts of T. infestans salivary glands, but not those of R. prolixus, showed a trypanolytic activity that was heat-inactivated and was not abolished by pre-incubation with any of the sugars or glycoproteins tested. T. infestans, which is refractory to infection by T. rangeli, thus appears to contain a much wider distribution of agglutinating and trypanolytic factors in its tissues than the more susceptible species, R. prolixus