797 resultados para Agent-Based Model
Resumo:
Significant empirical data from the fields of management and business strategy suggest that it is a good idea for a company to make in-house the components and processes underpinning a new technology. Other evidence suggests exactly the opposite, saying that firms would be better off buying components and processes from outside suppliers. One possible explanation for this lack of convergence is that earlier research in this area has overlooked two important aspects of the problem: reputation and trust. To gain insight into how these variables may impact make-buy decisions throughout the innovation process, the Sporas algorithm for measuring reputation was added to an existing agent-based model of how firms interact with each other throughout the development of new technologies. The model�s results suggest that reputation and trust do not play a significant role in the long-term fortunes of an individual firm as it contends with technological change in the marketplace. Accordingly, this model serves as a cue for management researchers to investigate more thoroughly the temporal limitations and contingencies that determine how the trust between firms may affect the R&D process.
Resumo:
Passenger flow studies in airport terminals have shown consistent statistical relationships between airport spatial layout and pedestrian movement, facilitating prediction of movement from terminal designs. However, these studies are done at an aggregate level and do not incorporate how individual passengers make decisions at a microscopic level. Therefore, they do not explain the formation of complex movement flows. In addition, existing models mostly focus on standard airport processing procedures such as immigration and security, but seldom consider discretionary activities of passengers, and thus are not able to truly describe the full range of passenger flows within airport terminals. As the route-choice decision-making of passengers involves many uncertain factors within the airport terminals, the mechanisms to fulfill the capacity of managing the route-choice have proven difficult to acquire and quantify. Could the study of cognitive factors of passengers (i.e. human mental preferences of deciding which on-airport facility to use) be useful to tackle these issues? Assuming the movement in virtual simulated environments can be analogous to movement in real environments, passenger behaviour dynamics can be similar to those generated in virtual experiments. Three levels of dynamics have been devised for motion control: the localised field, tactical level, and strategic level. A localised field refers to basic motion capabilities, such as walking speed, direction and avoidance of obstacles. The other two fields represent cognitive route-choice decision-making. This research views passenger flow problems via a "bottom-up approach", regarding individual passengers as independent intelligent agents who can behave autonomously and are able to interact with others and the ambient environment. In this regard, passenger flow formation becomes an emergent phenomenon of large numbers of passengers interacting with others. In the thesis, first, the passenger flow in airport terminals was investigated. Discretionary activities of passengers were integrated with standard processing procedures in the research. The localised field for passenger motion dynamics was constructed by a devised force-based model. Next, advanced traits of passengers (such as their desire to shop, their comfort with technology and their willingness to ask for assistance) were formulated to facilitate tactical route-choice decision-making. The traits consist of quantified measures of mental preferences of passengers when they travel through airport terminals. Each category of the traits indicates a decision which passengers may take. They were inferred through a Bayesian network model by analysing the probabilities based on currently available data. Route-choice decision-making was finalised by calculating corresponding utility results based on those probabilities observed. Three sorts of simulation outcomes were generated: namely, queuing length before checkpoints, average dwell time of passengers at service facilities, and instantaneous space utilisation. Queuing length reflects the number of passengers who are in a queue. Long queues no doubt cause significant delay in processing procedures. The dwell time of each passenger agent at the service facilities were recorded. The overall dwell time of passenger agents at typical facility areas were analysed so as to demonstrate portions of utilisation in the temporal aspect. For the spatial aspect, the number of passenger agents who were dwelling within specific terminal areas can be used to estimate service rates. All outcomes demonstrated specific results by typical simulated passenger flows. They directly reflect terminal capacity. The simulation results strongly suggest that integrating discretionary activities of passengers makes the passenger flows more intuitive, observing probabilities of mental preferences by inferring advanced traits make up an approach capable of carrying out tactical route-choice decision-making. On the whole, the research studied passenger flows in airport terminals by an agent-based model, which investigated individual characteristics of passengers and their impact on psychological route-choice decisions of passengers. Finally, intuitive passenger flows in airport terminals were able to be realised in simulation.
Resumo:
The safety of passengers is a major concern to airports. In the event of crises, having an effective and efficient evacuation process in place can significantly aid in enhancing passenger safety. Hence, it is necessary for airport operators to have an in-depth understanding of the evacuation process of their airport terminal. Although evacuation models have been used in studying pedestrian behaviour for decades, little research has been done in considering the evacuees’ group dynamics and the complexity of the environment. In this paper, an agent-based model is presented to simulate passenger evacuation process. Different exits were allocated to passengers based on their location and security level. The simulation results show that the evacuation time can be influenced by passenger group dynamics. This model also provides a convenient way to design airport evacuation strategy and examine its efficiency. The model was created using AnyLogic software and its parameters were initialised using recent research data published in the literature.
Resumo:
Group interaction within crowds is a common phenomenon and has great influence on pedestrian behaviour. This paper investigates the impact of passenger group dynamics using an agent-based simulation method for the outbound passenger process at airports. Unlike most passenger-flow models that treat passengers as individual agents, the proposed model additionally incorporates their group dynamics as well. The simulation compares passenger behaviour at airport processes and discretionary services under different group formations. Results from experiments (both qualitative and quantitative) show that incorporating group attributes, in particular, the interactions with fellow travellers and wavers can have significant influence on passengers activity preference as well as the performance and utilisation of services in airport terminals. The model also provides a convenient way to investigate the effectiveness of airport space design and service allocations, which can contribute to positive passenger experiences. The model was created using AnyLogic software and its parameters were initialised using recent research data published in the literature.
Resumo:
Earthworms are important organisms in soil communities and so are used as model organisms in environmental risk assessments of chemicals. However current risk assessments of soil invertebrates are based on short-term laboratory studies, of limited ecological relevance, supplemented if necessary by site-specific field trials, which sometimes are challenging to apply across the whole agricultural landscape. Here, we investigate whether population responses to environmental stressors and pesticide exposure can be accurately predicted by combining energy budget and agent-based models (ABMs), based on knowledge of how individuals respond to their local circumstances. A simple energy budget model was implemented within each earthworm Eisenia fetida in the ABM, based on a priori parameter estimates. From broadly accepted physiological principles, simple algorithms specify how energy acquisition and expenditure drive life cycle processes. Each individual allocates energy between maintenance, growth and/or reproduction under varying conditions of food density, soil temperature and soil moisture. When simulating published experiments, good model fits were obtained to experimental data on individual growth, reproduction and starvation. Using the energy budget model as a platform we developed methods to identify which of the physiological parameters in the energy budget model (rates of ingestion, maintenance, growth or reproduction) are primarily affected by pesticide applications, producing four hypotheses about how toxicity acts. We tested these hypotheses by comparing model outputs with published toxicity data on the effects of copper oxychloride and chlorpyrifos on E. fetida. Both growth and reproduction were directly affected in experiments in which sufficient food was provided, whilst maintenance was targeted under food limitation. Although we only incorporate toxic effects at the individual level we show how ABMs can readily extrapolate to larger scales by providing good model fits to field population data. The ability of the presented model to fit the available field and laboratory data for E. fetida demonstrates the promise of the agent-based approach in ecology, by showing how biological knowledge can be used to make ecological inferences. Further work is required to extend the approach to populations of more ecologically relevant species studied at the field scale. Such a model could help extrapolate from laboratory to field conditions and from one set of field conditions to another or from species to species.
Resumo:
Starting from the idea that economic systems fall into complexity theory, where its many agents interact with each other without a central control and that these interactions are able to change the future behavior of the agents and the entire system, similar to a chaotic system we increase the model of Russo et al. (2014) to carry out three experiments focusing on the interaction between Banks and Firms in an artificial economy. The first experiment is relative to Relationship Banking where, according to the literature, the interaction over time between Banks and Firms are able to produce mutual benefits, mainly due to reduction of the information asymmetry between them. The following experiment is related to information heterogeneity in the credit market, where the larger the bank, the higher their visibility in the credit market, increasing the number of consult for new loans. Finally, the third experiment is about the effects on the credit market of the heterogeneity of prices that Firms faces in the goods market.
Resumo:
In this paper, we analyze the rural-urban migration phenomenon as it is usually observed in economies which are in the early stages of industrialization. The analysis is conducted by means of a statistical mechanics approach which builds a computational agent-based model. Agents are placed on a lattice and the connections among them are described via an Ising-like model. Simulations on this computational model show some emergent properties that are common in developing economies, such as a transitional dynamics characterized by continuous growth of urban population, followed by the equalization of expected wages between rural and urban sectors (Harris-Todaro equilibrium condition), urban concentration and increasing of per capita income. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The Harris-Todaro model of the rural-urban migration process is revisited under an agent-based approach. The migration of the workers is interpreted as a process of social learning by imitation, formalized by a computational model. By simulating this model, we observe a transitional dynamics with continuous growth of the urban fraction of overall population toward an equilibrium. Such an equilibrium is characterized by stabilization of rural-urban expected wages differential (generalized Harris-Todaro equilibrium condition), urban concentration and urban unemployment. These classic results obtained originally by Harris and Todaro are emergent properties of our model.
Resumo:
In this work we present an agent-based model for the spread of tuberculosis where the individuals can be infected with either drug-susceptible or drug-resistant strains and can also receive a treatment. The dynamics of the model and the role of each one of the parameters are explained. The whole set of parameters is explored to check their importance in the numerical simulation results. The model captures the beneficial impact of the adequate treatment on the prevalence of tuberculosis. Nevertheless, depending on the treatment parameters range, it also captures the emergence of drug resistance. Drug resistance emergence is particularly likely to occur for parameter values corresponding to less efficacious treatment, as usually found in developing countries.
Resumo:
The agent-based model presented here, comprises an algorithm that computes the degree of hydration, the water consumption and the layer thickness of C-S-H gel as functions of time for different temperatures and different w/c ratios. The results are in agreement with reported experimental studies, demonstrating the applicability of the model. As the available experimental results regarding elevated curing temperature are scarce, the model could be recalibrated in the future. Combining the agent-based computational model with TGA analysis, a semiempirical method is achieved to be used for better understanding the microstructure development in ordinary cement pastes and to predict the influence of temperature on the hydration process.
Resumo:
We investigate knowledge exchange among commercial organizations, the rationale behind it, and its effects on the market. Knowledge exchange is known to be beneficial for industry, but in order to explain it, authors have used high-level concepts like network effects, reputation, and trust. We attempt to formalize a plausible and elegant explanation of how and why companies adopt information exchange and why it benefits the market as a whole when this happens. This explanation is based on a multiagent model that simulates a market of software providers. Even though the model does not include any high-level concepts, information exchange naturally emerges during simulations as a successful profitable behavior. The conclusions reached by this agent-based analysis are twofold: 1) a straightforward set of assumptions is enough to give rise to exchange in a software market, and 2) knowledge exchange is shown to increase the efficiency of the market.
Resumo:
There has been an increasing interest in the use of agent-based simulation and some discussion of the relative merits of this approach as compared to discrete-event simulation. There are differing views on whether an agent-based simulation offers capabilities that discrete-event cannot provide or whether all agent-based applications can at least in theory be undertaken using a discrete-event approach. This paper presents a simple agent-based NetLogo model and corresponding discrete-event versions implemented in the widely used ARENA software. The two versions of the discrete-event model presented use a traditional process flow approach normally adopted in discrete-event simulation software and also an agent-based approach to the model build. In addition a real-time spatial visual display facility is provided using a spreadsheet platform controlled by VBA code embedded within the ARENA model. Initial findings from this investigation are that discrete-event simulation can indeed be used to implement agent-based models and with suitable integration elements such as VBA provide the spatial displays associated with agent-based software.