959 resultados para Ag-H-ZSM-5 catalyst
Resumo:
The silver catalyzed, selective catalytic reduction (SCR) of nitrogen oxides (NOx) by CH4, is shown to be a structure-sensitive reaction. Pretreatment has a great affect on the catalytic performances. Upon thermal treatment in inert gas stream, thermal induced changes in silver morphology lead to the formation of reduced silver species of clusters and particles. Catalysis over this catalyst indicates an initially higher activity but lower selectivity for the CH4-SCR of NOx Reaction induced restructuring of silver results in the formation of ill-defined silver oxides. This, in turn, impacts the adsorption properties and diffusivity of oxygen over silver catalyst, results in the decrease in activity but increase in selectivity of Ag-H-ZSM-5 catalyst for the CH4-SCR of NO.. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The catalytic decomposition of NO over Ag-ZSM-5 catalyst prepared by ion-exchange was investigated. The exchanged silver in the zeolite was reduced and it collected in the course of the reaction to form silver particles of about 20 nm. The catalytic reaction induced a pronounced restructuring of the Ag particles through preferential formation of the (111) facets. These facets were shown to hind a tightly bound oxygen species (O-gamma). The O-gamma species occupies the active sites for NO adsorption resulting in catalyst deactivation. It could be removed by appropriate reducing agents, such as CO, to recover the active sites at elevated temperatures.
Resumo:
The reduction of NO with CO in the presence of excess oxygen was investigated over different noble metal catalysts for probing the relationship between catalytic properties and adsorption behaviors. Among the four precious metal catalysts investigated, Ir/ZSM-5 was found to be the only active one for NO reduction with CO under lean conditions. With the decreasing of the Ir content, higher NO conversion and CO selectivity was obtained. Temperature-programmed reaction (TPR) studies of NO/H-2/O-2 and NO/CO/O-2 showed that the Pt/ZSM-5 was active when H-2 was used as the reductant, whereas, the Ir/ZSM-5 was active when CO was the reducing agent. This difference is due to the different mechanisms of the two reactions. Temperature-programmed desorption (TPD) of NO, CO and O-2 showed that NO could dissociate more easily over the Ir/ZSM-5 than on the Pt/ZSM-5, while the oxidation of CO by O-2 proceeded more rapidly on the Pt/ZSM-5 than on the Ir/ZSM-5. The presence of excess O-2 inhibited drastically the dissociation of NO, which is considered as the key step for the NO-CO reaction. The high dissociation rate of NO over the Ir/ZSM-5 is visualized as the key factor for its superior high activity in NO reduction with CO under lean conditions. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Selective reduction of NO by CH4 on an In-Fe2O3/H-ZSM-5 catalyst was investigated in the presence of excess oxygen. Compared with In/H-ZSM-5, the In-Fe2O3/H-ZSM-5 catalyst with high Fe2O3 contents showed higher activity in a wide range of reaction temperatures. It was found that the addition of Fe2O3 yielded a promotion effect on CH4 activation. The influence of water vapor on NO conversion was also investigated. The activity of the In/H-ZSM-5 catalyst has been found to be strongly inhibited by water vapor, while the In-Fe2O3/H-ZSM-5 catalyst remained fairly active in the presence of 3.3% steam. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The kinetics of the NO SCR with propane has been studied on a low-exchanged Cu-ZSM-5 catalyst. The study of the kinetics of individual reaction stages (2-nitrosopropane isomerization to acetone oxime and reaction of adsorbed acetone oxime with gaseous NO) has shown that the NO reaction with acetone oxime is the rate-determining stage in the whole chain of transformations leading to the formation of molecular nitrogen in the low-temperature region below 300 C-degrees. The kinetic analysis of the reaction has revealed that at the temperatures above 300(degrees)C propane plays a more important role.
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
Acid strength distribution and the distribution of aromatics formed in the FCC gasoline conversion reaction on a ZSM-5 zeolite with different Na contents have been studied. With increasing Na content in the ZSM-5 zeolite, the acid sites determined by NH3-TPD technique, especially the strong acid sites, clearly decrease. When used as catalyst for the aromatization reaction, the transformation of olefins in the FCC gasoline into aromatics is governed directly by the strong acid sites on the ZSM-5 catalyst. Only under the conditions that a ZSM-5 catalyst possesses suitable strong acid sites is reaction temperature favorable for the aromatics formed.
Resumo:
Catalytic cracking of butene over potassium modified ZSM-5 catalysts was carried out in a fixed-bed microreactor. By increasing the K loading on the ZSM-5, butene conversion and ethene selectivity decreased almost linearly, while propene selectivity increased first, then passed through a maximum (about 50% selectivity) with the addition of ca. 0.7-1.0% K, and then decreased slowly with further increasing of the K loading. The reaction conditions were 620 degrees C, WHSV 3.5 h(-1), 0.1 MPa 1-butene partial pressure and 1 h of time on stream. Both by potassium modification of the ZSM-5 zeolite and by N(2) addition in the butene feed could enhance the selectivity towards propene effectively, but the catalyst stability did not show any improvement. On the other hand, addition of water to the butene feed could not only increase the butene conversion, but also improve the stability of the 0.7%K/ZSM-5 catalyst due to the effective removal of the coke formed, as demonstrated by the TPO spectra. XRD results indicated that the ZSM-5 structure of the 0.07% K/ZSM-5 catalyst was not destroyed even under this serious condition of adding water at 620 degrees C.
Resumo:
The catalytic performance of silver-modified ZSM-5 catalysts in the selectively catalytic reduction (SCR) of NOx with methane was investigated. NO was selectively reduced by CH4 to N-2 in the presence of excess O-2, and the catalytic activity depended on both the activation of CH4 and the adsorption properties of NOx. Silver incorporated in ZSM-5 zeolite activated CH4 at low temperatures and lowered the "light-off" temperature for the CH4-SCR of NOx. Temperature-programmed (TP) spectroscopy studies depicted that surface nitrosyl species directly decomposed to N-2 in the absence of O-2. CH4 could not effectively reduce surface nitrosyl species, but might facilitate the direct decomposition of NO through the removal of surface oxygen. Surface nitrates were formed in NO and O-2 coexisting system and could be effectively reduced by CR4 to nitrogen. The priority of surface nitrates to O-2 in the reaction with CH4 clearly demonstrated that CH4 selectively and preferentially reduced the surface nitrate species to N-2 in the excess of oxygen. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A comparison of methane dehydroaromatization (MDA) on 6Mo/MCM-22 and 6Mo/ZSM-5 was carried out using a gas mixture of 90%CH4, 2%CO2 and 8%Ar as the feed. The results indicate that the stability of 6Mo/MCM-22 is better than that of 6Mo/ZSM-5. A detailed study reveals that the ability for coke accommodation and the retention of the shape selectivity for aromatics formation is responsible for the stability of a MDA catalyst.