966 resultados para Ag
Resumo:
Filtration membrane technology has already been employed to remove various organic effluents produced from the textile, paper, plastic, leather, food and mineral processing industries. To improve membrane efficiency and alleviate membrane fouling, an integrated approach is adopted that combines membrane filtration and photocatalysis technology. In this study, alumina nanofiber (AF) membranes with pore size of about 10 nm (determined by the liquid-liquid displacement method) have been synthesized through an in situ hydrothermal reaction, which permitted a large flux and achieved high selectivity. Silver nanoparticles (Ag NPs) are subsequently doped on the nanofibers of the membranes. Silver nanoparticles can strongly absorb visible light due to the surface plasmon resonance (SPR) effect, and thus induce photocatalytic degradation of organic dyes, including anionic, cationic and neutral dyes, under visible light irradiation. In this integrated system, the dyes are retained on the membrane surface, their concentration in the vicinity of the Ag NPs are high and thus can be efficiently decomposed. Meanwhile, the usual flux deterioration caused by the accumulation of the filtered dyes in the passage pores can be avoided. For example, when an aqueous solution containing methylene blue is processed using an integrated membrane, a large flux of 200 L m-2 h-1 and a stable permeating selectivity of 85% were achieved. The combined photocatalysis and filtration function leads to superior performance of the integrated membranes, which have a potential to be used for the removal of organic pollutants in drinking water.
Resumo:
A combination of enzymatic digestion and electrospray ionisation mass spectrometry (ESI-MS) was used to characterise bifunctional adducts in which cisplatin is bound to GA base sequences in 8mer and 16mer oligonucleotides that do not contain other, higher affinity binding sites. The extent of formation of bifunctional adducts with GA base sequences was significant, but less than that seen with similar oligonucleotides containing either AG or GG sequences.
Resumo:
Large-scale molecular dynamics simulations are performed to characterize the effects of pre-existing surface defects on the vibrational properties of Ag nanowires. It is found that the first order natural frequency of the nanowire appears insensitive to different surface defects, indicating a defect insensitivity property of the nanowire’s Young’s modulus. In the meanwhile, an increase of the quality (Q)-factor is observed due to the presence of defects. Particular, a beat phenomenon is observed for the nanowire with the presence of a surface edge defect, which is driven by a single actuation. It is concluded that different surface defects could act as an effective mean to tune the vibrational properties of nanowires. This study sheds lights on the better understanding of nanowire’s mechanical performance when surface defects are presented, which would benefit the development of nanowire-based devices.
Resumo:
Bi-2212 tapes are prepared by a combination of dip-coating and partial melt processing. We investigate the effect of re-melting of those tapes by partial melting followed by slow cooling on the structure and superconducting properties. Microstructural studies of re-melted samples show that they have the same overall composition as partially melted tapes. However, the fractional volumes of the secondary phases differ and the amounts and distribution of the secondary phases have a significant effect on the critical current. Critical current of Bi-2212/Ag tapes strongly depends on the maximum processing temperature. Initial J(c)'s of the tapes, which are partially melted, then slowly solidified at optimum conditions and finally post-annealed in an inert atmosphere, are up to 10.4 x 10(3) A/cm(2). It is found that the maximum processing temperature at initial partial melting has an influence on the optimum re-heat treatment conditions for the tapes. Re-melted tapes processed at optimum conditions recover superconducting properties after post-annealing in an inert atmosphere: the J(c) values of the tapes are about 80-110% of initial J(c)'s of those tapes.
Resumo:
Superconducting composite Bi-2212/Ag tapes and their joints are fabricated by a combination of dip-coating and partial melt processing. The heat treated tapes have a critical current (Ic) between 8 and 26A, depending on tape thickness and the number of Bi-2212 layers. Current transmissions between 80% and 100% have been achieved through the joints of tapes. Different types of HTS joints of Bi-2212/Ag laminated tapes are made and their transport properties during winding operations are investigated. Irreversible strain values (ε irrev) for laminated tapes and their joints are determined and it is found that the degradation of Ic during tape bending depends on the type of joint.
Resumo:
Different types of HTS joints of Bi-2212/Ag tapes and laminates, which are fabricated by dip-coating and partial-melt processes, have been investigated. All joints are prepared using green single and laminated tapes and according to the scheme: coating-joining-processing. The heat treated tapes have critical current (Ic) between 7 and 27 A, depending on tape thickness and the number of Bi-2212 ceramic layers in laminated tapes. It is found that the current transport properties of joints depend on the type of laminate, joint configuration and joint treatment, Ic losses in joints of Bi-2212 tapes and laminates are attributed to defects in their structure, such as pores, secondary phases and misalignment of Bi-2212 grains near the Ag edges. By optimizing joint configuration, current transmission up to 100% is achieved for both single tapes and laminated tapes.
Resumo:
Superconducting Bi-2212 tapes and laminates are fabricated by a combination of dip-coating and partial melt processing. The heat treated tapes have critical current densities (Jc) up to 11 kAcm -2. We investigate the degradation of critical current (Ic) during bending experiments for both single tapes and tapes with laminate structure. Although degradation of Ic is observed in both forms, the characteristics of the degradation differ. It is determined that laminated tapes perform better than single tapes when critical current is measured against bending radius, and laminated tapes tolerate a higher strain for a given reduction in critical current. It is found that increasing the number of Bi-2212 layers increases the total Ic of the laminated tape, but degradation of critical current is more pronounced during bending because of the increased total thickness of the laminate structure. It is also found that addition of silver to the Bi-2212 layers reduces critical current degradation during bending for both tapes and laminates.
Molecular dynamics study of ‘contact epitaxy’ in Ag clusters supported on a copper (001) surface
Resumo:
In this paper, the formation of heteroepitaxial interfacial layers was investigated by molecular dynamics simulation of soft silver particles landing on the (001) surface of single-crystal copper. In our simulations, the clusters Ag13, Ag55, Ag147 and Ag688 were chosen as projectiles. A small cluster will rearrange into an f.c.c. structure when it is supported on the substrate, due to the large value of its surface/volume ratio. Contact epitaxy appeared in large clusters. The characteristic structure of an epitaxial layer in large silver cluster shows the 〈111〉 direction to be the preferential orientation of heteroepitaxial layers on the surface because of the lattice mismatch between the cluster and the substrate. This was confirmed by studying soft landing events in other systems (Au/Cu and Al/Ni).
Resumo:
Materials used in the engineering always contain imperfections or defects which significantly affect their performances. Based on the large-scale molecular dynamics simulation and the Euler–Bernoulli beam theory, the influence from different pre-existing surface defects on the bending properties of Ag nanowires (NWs) is studied in this paper. It is found that the nonlinear-elastic deformation, as well as the flexural rigidity of the NW is insensitive to different surface defects for the studied defects in this paper. On the contrary, an evident decrease of the yield strength is observed due to the existence of defects. In-depth inspection of the deformation process reveals that, at the onset of plastic deformation, dislocation embryos initiate from the locations of surface defects, and the plastic deformation is dominated by the nucleation and propagation of partial dislocations under the considered temperature. Particularly, the generation of stair-rod partial dislocations and Lomer–Cottrell lock are normally observed for both perfect and defected NWs. The generation of these structures has thwarted attempts of the NW to an early yielding, which leads to the phenomenon that more defects does not necessarily mean a lower critical force.
Resumo:
With the increasing popularity of the galvanic replacement approach towards the development of bimetallic nanocatalysts, special emphasis has been focused on minimizing the use of expensive metal (e.g. Pt), in the finally formed nanomaterials (e.g. Ag/Pt system as a possible catalyst for fuel cells). However, the complete removal of the less active sacrificial template is generally not achieved during galvanic replacement, and its residual presence may significantly impact on the electrocatalytic properties of the final material. Here, we investigate the hydrogen evolution reaction (HER) activity of Ag nanocubes replaced with different amounts of Pt, and demonstrate how the bimetallic composition significantly affects the activity of the alloyed nanomaterial.
Resumo:
We demonstrate an unusual shape transformation of Ag nanospheres into {111}-oriented Au–Ag dendritic nanostructures by a galvanic replacement reaction in the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]).
Resumo:
Gold is often considered as an inert material but it has been unequivocally demonstrated that it possesses unique electronic, optical, catalytic and electrocatalytic properties when in a nanostructured form.[1] For the latter the electrochemical behaviour of gold in aqueous media has been widely studied on a plethora of gold samples, including bulk polycrystalline and single-crystal electrodes, nanoparticles, evaporated films as well as electrodeposited nanostructures, particles and thin films.[1b, 2] It is now well-established that the electrochemical behaviour of gold is not as simple as an extended double-layer charging region followed by a monolayer oxide-formation/-removal process. In fact the so-called double-layer region of gold is significantly more complicated and has been investigated with a variety of electrochemical and surface science techniques. Burke and others[3] have demonstrated that significant processes due to the oxidation of low lattice stabilised atoms or clusters of atoms occur in this region at thermally and electrochemically treated electrodes which were confirmed later by Bond[4] to be Faradaic in nature via large-amplitude Fourier transformed ac voltammetric experiments. Supporting evidence for the oxidation of gold in the double-layer region was provided by Bard,[5] who used a surface interrogation mode of scanning electrochemical microscopy to quantify the extent of this process that forms incipient oxides on the surface. These were estimated to be as high as 20% of a monolayer. This correlated with contact electrode resistance measurements,[6] capacitance measurements[7] and also electroreflection techniques...
Resumo:
This study reports the synthesis of extremely high aspect ratios (>3000) organic semiconductor nanowires of Ag–tetracyanoquinodimethane (AgTCNQ) on the surface of a flexible Ag fabric for the first time. These one-dimensional (1D) hybrid Ag/AgTCNQ nanostructures are attained by a facile, solution-based spontaneous reaction involving immersion of Ag fabrics in an acetonitrile solution of TCNQ. Further, it is discovered that these AgTCNQ nanowires show outstanding antibacterial performance against both Gram negative and Gram positive bacteria, which outperforms that of pristine Ag. The outcomes of this study also reflect upon a fundamentally important aspect that the antimicrobial performance of Ag-based nanomaterials may not necessarily be solely due to the amount of Ag+ ions leached from these nanomaterials, but that the nanomaterial itself may also play a direct role in the antimicrobial action. Notably, the applications of metal-organic semiconducting charge transfer complexes of metal-7,7,8,8-tetracyanoquinodimethane (TCNQ) have been predominantly restricted to electronic applications, except from our recent reports on their (photo)catalytic potential and the current case on antimicrobial prospects. This report on growth of these metal-TCNQ complexes on a fabric not only widens the window of these interesting materials for new biological applications, it also opens the possibilities for developing large-area flexible electronic devices by growing a range of metal-organic semiconducting materials directly on a fabric surface.
Resumo:
The galvanic replacement of isolated electrodeposited semiconducting CuTCNQ microstructures on a glassy carbon (GC) substrate with gold is investigated. It is found that anisotropic metal nanoparticles are formed which are not solely confined to the redox active sites on the semiconducting materials but are also observed on the GC substrate which occurs via a lateral charge propagation mechanism. We also demonstrate that this galvanic replacement approach can be used for the formation of isolated AgTCNQ/Au microwire composites which occurs via an analogous mechanism. The resultant MTCNQ/Au (M = Cu, Ag) composite materials are characterized by Raman, spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and investigated for their catalytic properties for the reduction of ferricyanide ions with thiosulphate ions in aqueous solution. Significantly it is demonstrated that gold loading, nanoparticle shape and in particular the MTCNQ–Au interface are important factors that influence the reaction rate. It is shown that there is a synergistic effect at the CuTCNQ/Au composite when compared to AgTCNQ/Au at similar gold loadings.