999 resultados para Affirmative solution
Resumo:
El documento busca identificar hacia que tipo de solución al problema de la opresión de la población homosexual tienden los fundamentos teóricos de la jurisprudencia de constitucionalidad de la Corte Constitucional (1998 - 2009) que protege los Derechos Humanos de las personas y parejas homosexuales en Colombia, en términos de la teoría de la justicia desde la perspectiva del reconocimiento. Los pasos seguidos en esta investigación son: (i) identificación de las fuentes y formas de la opresión de la cual es víctima la población homosexual en occidente, (ii) identificación de la forma como ha operado dicha opresión —heteronormatividad— en Colombia, a través de un breve análisis del discurso jurídico, (iii) descripción de las soluciones que la teoría de la justicia como reconocimiento plantea al problema de la opresión de la población homosexual y, por último, (iv) análisis de los fundamentos teóricos de la jurisprudencia seleccionada a la luz de los criterios de la teoría de la justicia señalados. Como hipótesis se plantea que de las tres soluciones —afirmativa (política de la diferencia), transformativa (política queer) e intermedia (reforma no reformista) —, es la primera la que marca la tendencia.
Resumo:
How much information about the shape of an object can be inferred from its image? In particular, can the shape of an object be reconstructed by measuring the light it reflects from points on its surface? These questions were raised by Horn [HO70] who formulated a set of conditions such that the image formation can be described in terms of a first order partial differential equation, the image irradiance equation. In general, an image irradiance equation has infinitely many solutions. Thus constraints necessary to find a unique solution need to be identified. First we study the continuous image irradiance equation. It is demonstrated when and how the knowledge of the position of edges on a surface can be used to reconstruct the surface. Furthermore we show how much about the shape of a surface can be deduced from so called singular points. At these points the surface orientation is uniquely determined by the measured brightness. Then we investigate images in which certain types of silhouettes, which we call b-silhouettes, can be detected. In particular we answer the following question in the affirmative: Is there a set of constraints which assure that if an image irradiance equation has a solution, it is unique? To this end we postulate three constraints upon the image irradiance equation and prove that they are sufficient to uniquely reconstruct the surface from its image. Furthermore it is shown that any two of these constraints are insufficient to assure a unique solution to an image irradiance equation. Examples are given which illustrate the different issues. Finally, an overview of known numerical methods for computing solutions to an image irradiance equation are presented.
Resumo:
Fleck and Johnson (Int. J. Mech. Sci. 29 (1987) 507) and Fleck et al. (Proc. Inst. Mech. Eng. 206 (1992) 119) have developed foil rolling models which allow for large deformations in the roll profile, including the possibility that the rolls flatten completely. However, these models require computationally expensive iterative solution techniques. A new approach to the approximate solution of the Fleck et al. (1992) Influence Function Model has been developed using both analytic and approximation techniques. The numerical difficulties arising from solving an integral equation in the flattened region have been reduced by applying an Inverse Hilbert Transform to get an analytic expression for the pressure. The method described in this paper is applicable to cases where there is or there is not a flat region.
Resumo:
A new solution to the millionaire problem is designed on the base of two new techniques: zero test and batch equation. Zero test is a technique used to test whether one or more ciphertext contains a zero without revealing other information. Batch equation is a technique used to test equality of multiple integers. Combination of these two techniques produces the only known solution to the millionaire problem that is correct, private, publicly verifiable and efficient at the same time.