872 resultados para Affine transformation


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Affine transformations have proven to be very powerful for loop restructuring due to their ability to model a very wide range of transformations. A single multi-dimensional affine function can represent a long and complex sequence of simpler transformations. Existing affine transformation frameworks like the Pluto algorithm, that include a cost function for modern multicore architectures where coarse-grained parallelism and locality are crucial, consider only a sub-space of transformations to avoid a combinatorial explosion in finding the transformations. The ensuing practical tradeoffs lead to the exclusion of certain useful transformations, in particular, transformation compositions involving loop reversals and loop skewing by negative factors. In this paper, we propose an approach to address this limitation by modeling a much larger space of affine transformations in conjunction with the Pluto algorithm's cost function. We perform an experimental evaluation of both, the effect on compilation time, and performance of generated codes. The evaluation shows that our new framework, Pluto+, provides no degradation in performance in any of the Polybench benchmarks. For Lattice Boltzmann Method (LBM) codes with periodic boundary conditions, it provides a mean speedup of 1.33x over Pluto. We also show that Pluto+ does not increase compile times significantly. Experimental results on Polybench show that Pluto+ increases overall polyhedral source-to-source optimization time only by 15%. In cases where it improves execution time significantly, it increased polyhedral optimization time only by 2.04x.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We propose a level set based variational approach that incorporates shape priors into edge-based and region-based models. The evolution of the active contour depends on local and global information. It has been implemented using an efficient narrow band technique. For each boundary pixel we calculate its dynamic according to its gray level, the neighborhood and geometric properties established by training shapes. We also propose a criterion for shape aligning based on affine transformation using an image normalization procedure. Finally, we illustrate the benefits of the our approach on the liver segmentation from CT images.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mean shift tracker has achieved great success in visual object tracking due to its efficiency being nonparametric. However, it is still difficult for the tracker to handle scale changes of the object. In this paper, we associate a scale adaptive approach with the mean shift tracker. Firstly, the target in the current frame is located by the mean shift tracker. Then, a feature point matching procedure is employed to get the matched pairs of the feature point between target regions in the current frame and the previous frame. We employ FAST-9 corner detector and HOG descriptor for the feature matching. Finally, with the acquired matched pairs of the feature point, the affine transformation between target regions in the two frames is solved to obtain the current scale of the target. Experimental results show that the proposed tracker gives satisfying results when the scale of the target changes, with a good performance of efficiency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Automated image segmentation techniques are useful tools in biological image analysis and are an essential step in tracking applications. Typically, snakes or active contours are used for segmentation and they evolve under the influence of certain internal and external forces. Recently, a new class of shape-specific active contours have been introduced, which are known as Snakuscules and Ovuscules. These contours are based on a pair of concentric circles and ellipses as the shape templates, and the optimization is carried out by maximizing a contrast function between the outer and inner templates. In this paper, we present a unified approach to the formulation and optimization of Snakuscules and Ovuscules by considering a specific form of affine transformations acting on a pair of concentric circles. We show how the parameters of the affine transformation may be optimized for, to generate either Snakuscules or Ovuscules. Our approach allows for a unified formulation and relies only on generic regularization terms and not shape-specific regularization functions. We show how the calculations of the partial derivatives may be made efficient thanks to the Green's theorem. Results on synthesized as well as real data are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper investigates a new approach for point matching in multi-sensor satellite images. The feature points are matched using multi-objective optimization (angle criterion and distance condition) based on Genetic Algorithm (GA). This optimization process is more efficient as it considers both the angle criterion and distance condition to incorporate multi-objective switching in the fitness function. This optimization process helps in matching three corresponding corner points detected in the reference and sensed image and thereby using the affine transformation, the sensed image is aligned with the reference image. From the results obtained, the performance of the image registration is evaluated and it is concluded that the proposed approach is efficient.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new multi-sensor image registration technique is proposed based on detecting the feature corner points using modified Harris Corner Detector (HDC). These feature points are matched using multi-objective optimization (distance condition and angle criterion) based on Discrete Particle Swarm Optimization (DPSO). This optimization process is more efficient as it considers both the distance and angle criteria to incorporate multi-objective switching in the fitness function. This optimization process helps in picking up three corresponding corner points detected in the sensed and base image and thereby using the affine transformation, the sensed image is aligned with the base image. Further, the results show that the new approach can provide a new dimension in solving multi-sensor image registration problems. From the obtained results, the performance of image registration is evaluated and is concluded that the proposed approach is efficient.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new technique is proposed for multisensor image registration by matching the features using discrete particle swarm optimization (DPSO). The feature points are first extracted from the reference and sensed image using improved Harris corner detector available in the literature. From the extracted corner points, DPSO finds the three corresponding points in the sensed and reference images using multiobjective optimization of distance and angle conditions through objective switching technique. By this, the global best matched points are obtained which are used to evaluate the affine transformation for the sensed image. The performance of the image registration is evaluated and concluded that the proposed approach is efficient.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper investigates a novel approach for point matching of multi-sensor satellite imagery. The feature (corner) points extracted using an improved version of the Harris Corner Detector (HCD) is matched using multi-objective optimization based on a Genetic Algorithm (GA). An objective switching approach to optimization that incorporates an angle criterion, distance condition and point matching condition in the multi-objective fitness function is applied to match corresponding corner-points between the reference image and the sensed image. The matched points obtained in this way are used to align the sensed image with a reference image by applying an affine transformation. From the results obtained, the performance of the image registration is evaluated and compared with existing methods, namely Nearest Neighbor-Random SAmple Consensus (NN-Ran-SAC) and multi-objective Discrete Particle Swarm Optimization (DPSO). From the performed experiments it can be concluded that the proposed approach is an accurate method for registration of multi-sensor satellite imagery. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There are over 600,000 bridges in the US, and not all of them can be inspected and maintained within the specified time frame. This is because manually inspecting bridges is a time-consuming and costly task, and some state Departments of Transportation (DOT) cannot afford the essential costs and manpower. In this paper, a novel method that can detect large-scale bridge concrete columns is proposed for the purpose of eventually creating an automated bridge condition assessment system. The method employs image stitching techniques (feature detection and matching, image affine transformation and blending) to combine images containing different segments of one column into a single image. Following that, bridge columns are detected by locating their boundaries and classifying the material within each boundary in the stitched image. Preliminary test results of 114 concrete bridge columns stitched from 373 close-up, partial images of the columns indicate that the method can correctly detect 89.7% of these elements, and thus, the viability of the application of this research.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Manually inspecting bridges is a time-consuming and costly task. There are over 600,000 bridges in the US, and not all of them can be inspected and maintained within the specified time frame as some state DOTs cannot afford the essential costs and manpower. This paper presents a novel method that can detect bridge concrete columns from visual data for the purpose of eventually creating an automated bridge condition assessment system. The method employs SIFT feature detection and matching to find overlapping areas among images. Affine transformation matrices are then calculated to combine images containing different segments of one column into a single image. Following that, the bridge columns are detected by identifying the boundaries in the stitched image and classifying the material within each boundary. Preliminary test results using real bridge images indicate that most columns in stitched images can be correctly detected and thus, the viability of the application of this research.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The SB distributional model of Johnson's 1949 paper was introduced by a transformation to normality, that is, z ~ N(0, 1), consisting of a linear scaling to the range (0, 1), a logit transformation, and an affine transformation, z = γ + δu. The model, in its original parameterization, has often been used in forest diameter distribution modelling. In this paper, we define the SB distribution in terms of the inverse transformation from normality, including an initial linear scaling transformation, u = γ′ + δ′z (δ′ = 1/δ and γ′ = �γ/δ). The SB model in terms of the new parameterization is derived, and maximum likelihood estimation schema are presented for both model parameterizations. The statistical properties of the two alternative parameterizations are compared empirically on 20 data sets of diameter distributions of Changbai larch (Larix olgensis Henry). The new parameterization is shown to be statistically better than Johnson's original parameterization for the data sets considered here.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nous proposons de construire un atlas numérique 3D contenant les caractéristiques moyennes et les variabilités de la morphologie d’un organe. Nos travaux seront appliqués particulièrement à la construction d'un atlas numérique 3D de la totalité de la cornée humaine incluant la surface antérieure et postérieure à partir des cartes topographiques fournies par le topographe Orbscan II. Nous procédons tout d'abord par normalisation de toute une population de cornées. Dans cette étape, nous nous sommes basés sur l'algorithme de recalage ICP (iterative closest point) pour aligner simultanément les surfaces antérieures et postérieures d'une population de cornée vers les surfaces antérieure et postérieure d'une cornée de référence. En effet, nous avons élaboré une variante de l'algorithme ICP adapté aux images (cartes) de cornées qui tient compte de changement d'échelle pendant le recalage et qui se base sur la recherche par voisinage via la distance euclidienne pour établir la correspondance entre les points. Après, nous avons procédé pour la construction de l'atlas cornéen par le calcul des moyennes des élévations de surfaces antérieures et postérieures recalées et leurs écarts-types associés. Une population de 100 cornées saines a été utilisée pour construire l'atlas cornéen normal. Pour visualiser l’atlas, on a eu recours à des cartes topographiques couleurs similairement à ce qu’offrent déjà les systèmes topographiques actuels. Enfin, des observations ont été réalisées sur l'atlas cornéen reflétant sa précision et permettant de développer une meilleure connaissance de l’anatomie cornéenne.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cette thèse présente une étude dans divers domaines de l'informatique théorique de modèles de calculs combinant automates finis et contraintes arithmétiques. Nous nous intéressons aux questions de décidabilité, d'expressivité et de clôture, tout en ouvrant l'étude à la complexité, la logique, l'algèbre et aux applications. Cette étude est présentée au travers de quatre articles de recherche. Le premier article, Affine Parikh Automata, poursuit l'étude de Klaedtke et Ruess des automates de Parikh et en définit des généralisations et restrictions. L'automate de Parikh est un point de départ de cette thèse; nous montrons que ce modèle de calcul est équivalent à l'automate contraint que nous définissons comme un automate qui n'accepte un mot que si le nombre de fois que chaque transition est empruntée répond à une contrainte arithmétique. Ce modèle est naturellement étendu à l'automate de Parikh affine qui effectue une opération affine sur un ensemble de registres lors du franchissement d'une transition. Nous étudions aussi l'automate de Parikh sur lettres: un automate qui n'accepte un mot que si le nombre de fois que chaque lettre y apparaît répond à une contrainte arithmétique. Le deuxième article, Bounded Parikh Automata, étudie les langages bornés des automates de Parikh. Un langage est borné s'il existe des mots w_1, w_2, ..., w_k tels que chaque mot du langage peut s'écrire w_1...w_1w_2...w_2...w_k...w_k. Ces langages sont importants dans des domaines applicatifs et présentent usuellement de bonnes propriétés théoriques. Nous montrons que dans le contexte des langages bornés, le déterminisme n'influence pas l'expressivité des automates de Parikh. Le troisième article, Unambiguous Constrained Automata, introduit les automates contraints non ambigus, c'est-à-dire pour lesquels il n'existe qu'un chemin acceptant par mot reconnu par l'automate. Nous montrons qu'il s'agit d'un modèle combinant une meilleure expressivité et de meilleures propriétés de clôture que l'automate contraint déterministe. Le problème de déterminer si le langage d'un automate contraint non ambigu est régulier est montré décidable. Le quatrième article, Algebra and Complexity Meet Contrained Automata, présente une étude des représentations algébriques qu'admettent les automates contraints et les automates de Parikh affines. Nous déduisons de ces caractérisations des résultats d'expressivité et de complexité. Nous montrons aussi que certaines hypothèses classiques en complexité computationelle sont reliées à des résultats de séparation et de non clôture dans les automates de Parikh affines. La thèse est conclue par une ouverture à un possible approfondissement, au travers d'un certain nombre de problèmes ouverts.