991 resultados para Affine registration between meshes
Resumo:
Pectus excavatum is the most common congenital deformity of the anterior chest wall, in which several ribs and the sternum grow abnormally. Nowadays, the surgical correction is carried out in children and adults through Nuss technic. This technic has been shown to be safe with major drivers as cosmesis and the prevention of psychological problems and social stress. Nowadays, no application is known to predict the cosmetic outcome of the pectus excavatum surgical correction. Such tool could be used to help the surgeon and the patient in the moment of deciding the need for surgery correction. This work is a first step to predict postsurgical outcome in pectus excavatum surgery correction. Facing this goal, it was firstly determined a point cloud of the skin surface along the thoracic wall using Computed Tomography (before surgical correction) and the Polhemus FastSCAN (after the surgical correction). Then, a surface mesh was reconstructed from the two point clouds using a Radial Basis Function algorithm for further affine registration between the meshes. After registration, one studied the surgical correction influence area (SCIA) of the thoracic wall. This SCIA was used to train, test and validate artificial neural networks in order to predict the surgical outcome of pectus excavatum correction and to determine the degree of convergence of SCIA in different patients. Often, ANN did not converge to a satisfactory solution (each patient had its own deformity characteristics), thus invalidating the creation of a mathematical model capable of estimating, with satisfactory results, the postsurgical outcome
Resumo:
This paper presents automated segmentation of structuresin the Head and Neck (H\&N) region, using an activecontour-based joint registration and segmentation model.A new atlas selection strategy is also used. Segmentationis performed based on the dense deformation fieldcomputed from the registration of selected structures inthe atlas image that have distinct boundaries, onto thepatient's image. This approach results in robustsegmentation of the structures of interest, even in thepresence of tumors, or anatomical differences between theatlas and the patient image. For each patient, an atlasimage is selected from the available atlas-database,based on the similarity metric value, computed afterperforming an affine registration between each image inthe atlas-database and the patient's image. Unlike manyof the previous approaches in the literature, thesimilarity metric is not computed over the entire imageregion; rather, it is computed only in the regions ofsoft tissue structures to be segmented. Qualitative andquantitative evaluation of the results is presented.
Resumo:
Measurement of joint kinematics can provide knowledge to help improve joint prosthesis design, as well as identify joint motion patterns that may lead to joint degeneration or injury. More investigation into how the hip translates in live human subjects during high amplitude motions is needed. This work presents a design of a non-invasive method using the registration between images from conventional Magnetic Resonance Imaging (MRI) and open MRI to calculate three dimensional hip joint kinematics. The method was tested on a single healthy subject in three different poses. MRI protocols for the conventional gantry, high-resolution MRI and the open gantry, lowresolution MRI were developed. The scan time for the low-resolution protocol was just under 6 minutes. High-resolution meshes and low resolution contours were derived from segmentation of the high-resolution and low-resolution images, respectively. Low-resolution contours described the poses as scanned, whereas the meshes described the bones’ geometries. The meshes and contours were registered to each other, and joint kinematics were calculated. The segmentation and registration were performed for both cortical and sub-cortical bone surfaces. A repeatability study was performed by comparing the kinematic results derived from three users’ segmentations of the sub-cortical bone surfaces from a low-resolution scan. The root mean squared error of all registrations was below 1.92mm. The maximum range between segmenters in translation magnitude was 0.95mm, and the maximum deviation from the average of all orientations was 1.27◦. This work demonstrated that this method for non-invasive measurement of hip kinematics is promising for measuring high-range-of-motion hip motions in vivo.
Resumo:
Measurement of joint kinematics can provide knowledge to help improve joint prosthesis design, as well as identify joint motion patterns that may lead to joint degeneration or injury. More investigation into how the hip translates in live human subjects during high amplitude motions is needed. This work presents a design of a non-invasive method using the registration between images from conventional Magnetic Resonance Imaging (MRI) and open MRI to calculate three dimensional hip joint kinematics. The method was tested on a single healthy subject in three different poses. MRI protocols for the conventional gantry, high-resolution MRI and the open gantry, lowresolution MRI were developed. The scan time for the low-resolution protocol was just under 6 minutes. High-resolution meshes and low resolution contours were derived from segmentation of the high-resolution and low-resolution images, respectively. Low-resolution contours described the poses as scanned, whereas the meshes described the bones’ geometries. The meshes and contours were registered to each other, and joint kinematics were calculated. The segmentation and registration were performed for both cortical and sub-cortical bone surfaces. A repeatability study was performed by comparing the kinematic results derived from three users’ segmentations of the sub-cortical bone surfaces from a low-resolution scan. The root mean squared error of all registrations was below 1.92mm. The maximum range between segmenters in translation magnitude was 0.95mm, and the maximum deviation from the average of all orientations was 1.27◦. This work demonstrated that this method for non-invasive measurement of hip kinematics is promising for measuring high-range-of-motion hip motions in vivo.
Resumo:
Introduction: Survival of children born prematurely or with very low birth weight has increased dramatically, but the long term developmental outcome remains unknown. Many children have deficits in cognitive capacities, in particular involving executive domains and those disabilities are likely to involve a central nervous system deficit. To understand their neurostructural origin, we use DTI. Structurally segregated and functionally regions of the cerebral cortex are interconnected by a dense network of axonal pathways. We noninvasively map these pathways across cortical hemispheres and construct normalized structural connection matrices derived from DTI MR tractography. Group comparisons of brain connectivity reveal significant changes in fiber density in case of children with poor intrauterine grown and extremely premature children (gestational age<28 weeks at birth) compared to control subjects. This changes suggest a link between cortico-axonal pathways and the central nervous system deficit. Methods: Sixty premature born infants (5-6 years old) were scanned on clinical 3T scanner (Magnetom Trio, Siemens Medical Solutions, Erlangen, Germany) at two hospitals (HUG, Geneva and CHUV, Lausanne). For each subject, T1-weighted MPRAGE images (TR/TE=2500/2.91,TI=1100, resolution=1x1x1mm, matrix=256x154) and DTI images (30 directions, TR/TE=10200/107, in-plane resolution=1.8x1.8x2mm, 64 axial, matrix=112x112) were acquired. Parent(s) provided written consent on prior ethical board approval. The extraction of the Whole Brain Structural Connectivity Matrix was performed following (Cammoun, 2009 and Hagmann, 2008). The MPARGE images were registered using an affine registration to the non-weighted-DTI and WM-GM segmentation performed on it. In order to have equal anatomical localization among subjects, 66 cortical regions with anatomical landmarks were created using the curvature information, i.e. sulcus and gyrus (Cammoun et al, 2007; Fischl et al, 2004; Desikan et al, 2006) with freesurfer software (http://surfer.nmr.mgh.harvard.edu/). Tractography was performed in WM using an algorithm especially designed for DTI/DSI data (Hagmann et al., 2007) and both information were then combined in a matrix. Each row and column of the matrix corresponds to a particular ROI. Each cell of index (i,j) represents the fiber density of the bundle connecting the ROIs i and j. Subdividing each cortical region, we obtained 4 Connectivity Matrices of different resolution (33, 66, 125 and 250 ROI/hemisphere) for each subject . Subjects were sorted in 3 different groups, namely (1) control, (2) Intrauterine Growth Restriction (IUGR), (3) Extreme Prematurity (EP), depending on their gestational age, weight and percentile-weight score at birth. Group-to-group comparisons were performed between groups (1)-(2) and (1)-(3). The mean age at examination of the three groups were similar. Results: Quantitative analysis were performed between groups to determine fibers density differences. For each group, a mean connectivity matrix with 33ROI/hemisphere resolution was computed. On the other hand, for all matrix resolutions (33,66,125,250 ROI/hemisphere), the number of bundles were computed and averaged. As seen in figure 1, EP and IUGR subjects present an overall reduction of fibers density in both interhemispherical and intrahemispherical connections. This is given quantitatively in table 1. IUGR subjects presents a higher percentage of missing fiber bundles than EP when compared to control subjects (~16% against 11%). When comparing both groups to control subjects, for the EP subjects, the occipito-parietal regions seem less interhemispherically connected whilst the intrahemispherical networks present lack of fiber density in the lymbic system. Children born with IUGR, have similar reductions in interhemispherical connections than the EP. However, the cuneus and precuneus connections with the precentral and paracentral lobe are even lower than in the case of the EP. For the intrahemispherical connections the IUGR group preset a loss of fiber density between the deep gray matter structures (striatum) and the frontal and middlefrontal poles, connections typically involved in the control of executive functions. For the qualitative analysis, a t-test comparing number of bundles (p-value<0.05) gave some preliminary significant results (figure 2). Again, even if both IUGR and EP appear to have significantly less connections comparing to the control subjects, the IUGR cohort seems to present a higher lack of fiber density specially relying the cuneus, precuneus and parietal areas. In terms of fiber density, preliminary Wilcoxon tests seem to validate the hypothesis set by the previous analysis. Conclusions: The goal of this study was to determine the effect of extreme prematurity and poor intrauterine growth on neurostructural development at the age of 6 years-old. This data indicates that differences in connectivity may well be the basis for the neurostructural and neuropsychological deficit described in these populations in the absence of overt brain lesions (Inder TE, 2005; Borradori-Tolsa, 2004; Dubois, 2008). Indeed, we suggest that IUGR and prematurity leads to alteration of connectivity between brain structures, especially in occipito-parietal and frontal lobes for EP and frontal and middletemporal poles for IUGR. Overall, IUGR children have a higher loss of connectivity in the overall connectivity matrix than EP children. In both cases, the localized alteration of connectivity suggests a direct link between cortico-axonal pathways and the central nervous system deficit. Our next step is to link these connectivity alterations to the performance in executive function tests.
Resumo:
We prove an existence result for local and global G-structure preserving affine immersions between affine manifolds. Several examples are discussed in the context of Riemannian and semi-Riemannian geometry, including the case of isometric immersions into Lie groups endowed with a left-invariant metric, and the case of isometric immersions into products of space forms.
Resumo:
Constructing a 3D surface model from sparse-point data is a nontrivial task. Here, we report an accurate and robust approach for reconstructing a surface model of the proximal femur from sparse-point data and a dense-point distribution model (DPDM). The problem is formulated as a three-stage optimal estimation process. The first stage, affine registration, is to iteratively estimate a scale and a rigid transformation between the mean surface model of the DPDM and the sparse input points. The estimation results of the first stage are used to establish point correspondences for the second stage, statistical instantiation, which stably instantiates a surface model from the DPDM using a statistical approach. This surface model is then fed to the third stage, kernel-based deformation, which further refines the surface model. Handling outliers is achieved by consistently employing the least trimmed squares (LTS) approach with a roughly estimated outlier rate in all three stages. If an optimal value of the outlier rate is preferred, we propose a hypothesis testing procedure to automatically estimate it. We present here our validations using four experiments, which include 1 leave-one-out experiment, 2 experiment on evaluating the present approach for handling pathology, 3 experiment on evaluating the present approach for handling outliers, and 4 experiment on reconstructing surface models of seven dry cadaver femurs using clinically relevant data without noise and with noise added. Our validation results demonstrate the robust performance of the present approach in handling outliers, pathology, and noise. An average 95-percentile error of 1.7-2.3 mm was found when the present approach was used to reconstruct surface models of the cadaver femurs from sparse-point data with noise added.
Resumo:
We show a procedure for constructing a probabilistic atlas based on affine moment descriptors. It uses a normalization procedure over the labeled atlas. The proposed linear registration is defined by closed-form expressions involving only geometric moments. This procedure applies both to atlas construction as atlas-based segmentation. We model the likelihood term for each voxel and each label using parametric or nonparametric distributions and the prior term is determined by applying the vote-rule. The probabilistic atlas is built with the variability of our linear registration. We have two segmentation strategy: a) it applies the proposed affine registration to bring the target image into the coordinate frame of the atlas or b) the probabilistic atlas is non-rigidly aligning with the target image, where the probabilistic atlas is previously aligned to the target image with our affine registration. Finally, we adopt a graph cut - Bayesian framework for implementing the atlas-based segmentation.
Resumo:
Mestrado em Medicina Nuclear - Área de especialização: Tomografia por Emissão de Positrões.
Resumo:
Brain deformations induced by space-occupying lesions may result in unpredictable position and shape of functionally important brain structures. The aim of this study is to propose a method for segmentation of brain structures by deformation of a segmented brain atlas in presence of a space-occupying lesion. Our approach is based on an a priori model of lesion growth (MLG) that assumes radial expansion from a seeding point and involves three steps: first, an affine registration bringing the atlas and the patient into global correspondence; then, the seeding of a synthetic tumor into the brain atlas providing a template for the lesion; finally, the deformation of the seeded atlas, combining a method derived from optical flow principles and a model of lesion growth. The method was applied on two meningiomas inducing a pure displacement of the underlying brain structures, and segmentation accuracy of ventricles and basal ganglia was assessed. Results show that the segmented structures were consistent with the patient's anatomy and that the deformation accuracy of surrounding brain structures was highly dependent on the accurate placement of the tumor seeding point. Further improvements of the method will optimize the segmentation accuracy. Visualization of brain structures provides useful information for therapeutic consideration of space-occupying lesions, including surgical, radiosurgical, and radiotherapeutic planning, in order to increase treatment efficiency and prevent neurological damage.
Resumo:
We propose a method for brain atlas deformation inpresence of large space-occupying tumors, based on an apriori model of lesion growth that assumes radialexpansion of the lesion from its starting point. First,an affine registration brings the atlas and the patientinto global correspondence. Then, the seeding of asynthetic tumor into the brain atlas provides a templatefor the lesion. Finally, the seeded atlas is deformed,combining a method derived from optical flow principlesand a model of lesion growth (MLG). Results show that themethod can be applied to the automatic segmentation ofstructures and substructures in brains with grossdeformation, with important medical applications inneurosurgery, radiosurgery and radiotherapy.
Resumo:
We propose a method for brain atlas deformation in the presence of large space-occupying tumors, based on an a priori model of lesion growth that assumes radial expansion of the lesion from its starting point. Our approach involves three steps. First, an affine registration brings the atlas and the patient into global correspondence. Then, the seeding of a synthetic tumor into the brain atlas provides a template for the lesion. The last step is the deformation of the seeded atlas, combining a method derived from optical flow principles and a model of lesion growth. Results show that a good registration is performed and that the method can be applied to automatic segmentation of structures and substructures in brains with gross deformation, with important medical applications in neurosurgery, radiosurgery, and radiotherapy.
Resumo:
Summary Detection, analysis and monitoring of slope movements by high-resolution digital elevation modelsSlope movements, such as rockfalls, rockslides, shallow landslides or debris flows, are frequent in many mountainous areas. These natural hazards endanger the inhabitants and infrastructures making it necessary to assess the hazard and risk caused by these phenomena. This PhD thesis explores various approaches using digital elevation models (DEMs) - and particularly high-resolution DEMs created by aerial or terrestrial laser scanning (TLS) - that contribute to the assessment of slope movement hazard at regional and local scales.The regional detection of areas prone to rockfalls and large rockslides uses different morphologic criteria or geometric instability factors derived from DEMs, i.e. the steepness of the slope, the presence of discontinuities, which enable a sliding mechanism, and the denudation potential. The combination of these factors leads to a map of susceptibility to rockfall initiation that is in good agreement with field studies as shown with the example of the Little Mill Campground area (Utah, USA). Another case study in the Illgraben catchment in the Swiss Alps highlighted the link between areas with a high denudation potential and actual rockfall areas.Techniques for a detailed analysis and characterization of slope movements based on high-resolution DEMs have been developed for specific, localized sites, i.e. ancient slide scars, present active instabilities or potential slope instabilities. The analysis of the site's characteristics mainly focuses on rock slopes and includes structural analyses (orientation of discontinuities); estimation of spacing, persistence and roughness of discontinuities; failure mechanisms based on the structural setting; and volume calculations. For the volume estimation a new 3D approach was tested to reconstruct the topography before a landslide or to construct the basal failure surface of an active or potential instability. The rockslides at Åknes, Tafjord and Rundefjellet in western Norway were principally used as study sites to develop and test the different techniques.The monitoring of slope instabilities investigated in this PhD thesis is essentially based on multitemporal (or sequential) high-resolution DEMs, in particular sequential point clouds acquired by TLS. The changes in the topography due to slope movements can be detected and quantified by sequential TLS datasets, notably by shortest distance comparisons revealing the 3D slope movements over the entire region of interest. A detailed analysis of rock slope movements is based on the affine transformation between an initial and a final state of the rock mass and its decomposition into translational and rotational movements. Monitoring using TLS was very successful on the fast-moving Eiger rockslide in the Swiss Alps, but also on the active rockslides of Åknes and Nordnesfjellet (northern Norway). One of the main achievements on the Eiger and Aknes rockslides is to combine the site's morphology and structural setting with the measured slope movements to produce coherent instability models. Both case studies also highlighted a strong control of the structures in the rock mass on the sliding directions. TLS was also used to monitor slope movements in soils, such as landslides in sensitive clays in Québec (Canada), shallow landslides on river banks (Sorge River, Switzerland) and a debris flow channel (Illgraben).The PhD thesis underlines the broad uses of high-resolution DEMs and especially of TLS in the detection, analysis and monitoring of slope movements. Future studies should explore in more depth the different techniques and approaches developed and used in this PhD, improve them and better integrate the findings in current hazard assessment practices and in slope stability models.Résumé Détection, analyse et surveillance de mouvements de versant à l'aide de modèles numériques de terrain de haute résolutionDes mouvements de versant, tels que des chutes de blocs, glissements de terrain ou laves torrentielles, sont fréquents dans des régions montagneuses et mettent en danger les habitants et les infrastructures ce qui rend nécessaire d'évaluer le danger et le risque causé par ces phénomènes naturels. Ce travail de thèse explore diverses approches qui utilisent des modèles numériques de terrain (MNT) et surtout des MNT de haute résolution créés par scanner laser terrestre (SLT) ou aérien - et qui contribuent à l'évaluation du danger de mouvements de versant à l'échelle régionale et locale.La détection régionale de zones propices aux chutes de blocs ou aux éboulements utilise plusieurs critères morphologiques dérivés d'un MNT, tels que la pente, la présence de discontinuités qui permettent un mécanisme de glissement ou le potentiel de dénudation. La combinaison de ces facteurs d'instabilité mène vers une carte de susceptibilité aux chutes de blocs qui est en accord avec des travaux de terrain comme démontré avec l'exemple du Little Mill Campground (Utah, États-Unis). Un autre cas d'étude - l'Illgraben dans les Alpes valaisannes - a mis en évidence le lien entre les zones à fort potentiel de dénudation et les sources effectives de chutes de blocs et d'éboulements.Des techniques pour l'analyse et la caractérisation détaillée de mouvements de versant basées sur des MNT de haute résolution ont été développées pour des sites spécifiques et localisés, comme par exemple des cicatrices d'anciens éboulements et des instabilités actives ou potentielles. Cette analyse se focalise principalement sur des pentes rocheuses et comprend l'analyse structurale (orientation des discontinuités); l'estimation de l'espacement, la persistance et la rugosité des discontinuités; l'établissement des mécanismes de rupture; et le calcul de volumes. Pour cela une nouvelle approche a été testée en rétablissant la topographie antérieure au glissement ou en construisant la surface de rupture d'instabilités actuelles ou potentielles. Les glissements rocheux d'Åknes, Tafjord et Rundefjellet en Norvège ont été surtout utilisés comme cas d'étude pour développer et tester les diverses approches. La surveillance d'instabilités de versant effectuée dans cette thèse de doctorat est essentiellement basée sur des MNT de haute résolution multi-temporels (ou séquentiels), en particulier des nuages de points séquentiels acquis par SLT. Les changements topographiques dus aux mouvements de versant peuvent être détectés et quantifiés sur l'ensemble d'un glissement, notamment par comparaisons des distances les plus courtes entre deux nuages de points. L'analyse détaillée des mouvements est basée sur la transformation affine entre la position initiale et finale d'un bloc et sa décomposition en mouvements translationnels et rotationnels. La surveillance par SLT a démontré son potentiel avec l'effondrement d'un pan de l'Eiger dans les Alpes suisses, mais aussi aux glissements rocheux d'Aknes et Nordnesfjellet en Norvège. Une des principales avancées à l'Eiger et à Aknes est la création de modèles d'instabilité cohérents en combinant la morphologie et l'agencement structural des sites avec les mesures de déplacements. Ces deux cas d'étude ont aussi démontré le fort contrôle des structures existantes dans le massif rocheux sur les directions de glissement. Le SLT a également été utilisé pour surveiller des glissements dans des terrains meubles comme dans les argiles sensibles au Québec (Canada), sur les berges de la rivière Sorge en Suisse et dans le chenal à laves torrentielles de l'Illgraben.Cette thèse de doctorat souligne le vaste champ d'applications des MNT de haute résolution et particulièrement du SLT dans la détection, l'analyse et la surveillance des mouvements de versant. Des études futures devraient explorer plus en profondeur les différentes techniques et approches développées, les améliorer et mieux les intégrer dans des pratiques actuelles d'analyse de danger et surtout dans la modélisation de stabilité des versants.
Resumo:
A method for the construction of a patient-specific model of a scoliotic torso for surgical planning via inter- patient registration is presented. Magnetic Resonance Images (MRI) of a generic model are registered to surface topography (TP) and X-ray data of a test patient. A partial model is first obtained via thin-plate spline registration between TP and X-ray data of the test patient. The MRIs from the generic model are then fit into the test patient using articulated model registration between the vertebrae of the generic model’s MRIs in prone position and the test patient’s X-rays in standing position. A non-rigid deformation of the soft tissues is performed using a modified thin-plate spline constrained to maintain bone rigidity and to fit in the space between the vertebrae and the surface of the torso. Results show average Dice values of 0.975 ± 0.012 between the MRIs following inter-patient registration and the surface topography of the test patient, which is comparable to the average value of 0.976 ± 0.009 previously obtained following intra-patient registration. The results also show a significant improvement compared to rigid inter-patient registration. Future work includes validating the method on a larger cohort of patients and incorporating soft tissue stiffness constraints. The method developed can be used to obtain a geometric model of a patient including bone structures, soft tissues and the surface of the torso which can be incorporated in a surgical simulator in order to better predict the outcome of scoliosis surgery, even if MRI data cannot be acquired for the patient.
Resumo:
The translation of an ensemble of model runs into a probability distribution is a common task in model-based prediction. Common methods for such ensemble interpretations proceed as if verification and ensemble were draws from the same underlying distribution, an assumption not viable for most, if any, real world ensembles. An alternative is to consider an ensemble as merely a source of information rather than the possible scenarios of reality. This approach, which looks for maps between ensembles and probabilistic distributions, is investigated and extended. Common methods are revisited, and an improvement to standard kernel dressing, called ‘affine kernel dressing’ (AKD), is introduced. AKD assumes an affine mapping between ensemble and verification, typically not acting on individual ensemble members but on the entire ensemble as a whole, the parameters of this mapping are determined in parallel with the other dressing parameters, including a weight assigned to the unconditioned (climatological) distribution. These amendments to standard kernel dressing, albeit simple, can improve performance significantly and are shown to be appropriate for both overdispersive and underdispersive ensembles, unlike standard kernel dressing which exacerbates over dispersion. Studies are presented using operational numerical weather predictions for two locations and data from the Lorenz63 system, demonstrating both effectiveness given operational constraints and statistical significance given a large sample.