442 resultados para Affine immersions
Resumo:
We prove an existence result for local and global G-structure preserving affine immersions between affine manifolds. Several examples are discussed in the context of Riemannian and semi-Riemannian geometry, including the case of isometric immersions into Lie groups endowed with a left-invariant metric, and the case of isometric immersions into products of space forms.
Resumo:
We prove the existence of an associated family of G-structure preserving minimal immersions into semi-Riemannian manifolds endowed with a compatible infinitesimally homogeneous G-structure. We will study in more details minimal embeddings into product of space forms.
Resumo:
There exist uniquely ergodic affine interval exchange transformations of [0,1] with flips which have wandering intervals and are such that the support of the invariant measure is a Cantor set.
Resumo:
Irreducible nonzero level modules with finite-dimensional weight spaces are discussed for nontwisted affine Lie superalgebras. A complete classification of such modules is obtained for superalgebras of type A(m, n)(boolean AND) and C(n)(boolean AND) using Mathieu's classification of cuspidal modules over simple Lie algebras. In other cases the classification problem is reduced to the classification of cuspidal modules over finite-dimensional cuspidal Lie superalgebras described by Dimitrov, Mathieu and Penkov. Based on these results a. complete classification of irreducible integrable (in the sense of Kac and Wakimoto) modules is obtained by showing that any such module is of highest weight, in which case the problem was solved by Kac and Wakimoto.
Resumo:
We study induced modules of nonzero central charge with arbitrary multiplicities over affine Lie algebras. For a given pseudo parabolic subalgebra P of an affine Lie algebra G, our main result establishes the equivalence between a certain category of P-induced G-modules and the category of weight P-modules with injective action of the central element of G. In particular, the induction functor preserves irreducible modules. If P is a parabolic subalgebra with a finite-dimensional Levi factor then it defines a unique pseudo parabolic subalgebra P(ps), P subset of P(ps). The structure of P-induced modules in this case is fully determined by the structure of P(ps)-induced modules. These results generalize similar reductions in particular cases previously considered by V. Futorny, S. Konig, V. Mazorchuk [Forum Math. 13 (2001), 641-661], B. Cox [Pacific J. Math. 165 (1994), 269-294] and I. Dimitrov, V. Futorny, I. Penkov [Comm. Math. Phys. 250 (2004), 47-63].
Resumo:
In this paper, we propose an approach to the transient and steady-state analysis of the affine combination of one fast and one slow adaptive filters. The theoretical models are based on expressions for the excess mean-square error (EMSE) and cross-EMSE of the component filters, which allows their application to different combinations of algorithms, such as least mean-squares (LMS), normalized LMS (NLMS), and constant modulus algorithm (CMA), considering white or colored inputs and stationary or nonstationary environments. Since the desired universal behavior of the combination depends on the correct estimation of the mixing parameter at every instant, its adaptation is also taken into account in the transient analysis. Furthermore, we propose normalized algorithms for the adaptation of the mixing parameter that exhibit good performance. Good agreement between analysis and simulation results is always observed.
Distributed Estimation Over an Adaptive Incremental Network Based on the Affine Projection Algorithm
Resumo:
We study the problem of distributed estimation based on the affine projection algorithm (APA), which is developed from Newton`s method for minimizing a cost function. The proposed solution is formulated to ameliorate the limited convergence properties of least-mean-square (LMS) type distributed adaptive filters with colored inputs. The analysis of transient and steady-state performances at each individual node within the network is developed by using a weighted spatial-temporal energy conservation relation and confirmed by computer simulations. The simulation results also verify that the proposed algorithm provides not only a faster convergence rate but also an improved steady-state performance as compared to an LMS-based scheme. In addition, the new approach attains an acceptable misadjustment performance with lower computational and memory cost, provided the number of regressor vectors and filter length parameters are appropriately chosen, as compared to a distributed recursive-least-squares (RLS) based method.
Resumo:
The minimal irreducible representations of U-q[gl(m|n)], i.e. those irreducible representations that are also irreducible under U-q[osp(m|n)] are investigated and shown to be affinizable to give irreducible representations of the twisted quantum affine superalgebra U-q[gl(m|n)((2))]. The U-q[osp(m|n)] invariant R-matrices corresponding to the tensor product of any two minimal representations are constructed, thus extending our twisted tensor product graph method to the supersymmetric case. These give new solutions to the spectral-dependent graded Yang-Baxter equation arising from U-q[gl(m|n)((2))], which exhibit novel features not previously seen in the untwisted or non-super cases.
Resumo:
We describe the realization of the super-Reshetikhin-Semenov-Tian-Shansky (RS) algebra in quantum affine superalgebras, thus generalizing the approach of Frenkel and Reshetikhin to the supersymmetric (and twisted) case. The algebraic homomorphism between the super-RS algebra and the Drinfeld current realization of quantum affine superalgebras is established by using the Gauss decomposition technique of Ding and Frenkel. As an application, we obtain Drinfeld realization of quantum affine superalgebra U-q [osp(1/2)((1))] and its degeneration - central extended super-Yangian double DY(h over bar) [osp(1/2)((1))].
Resumo:
We describe the twisted affine superalgebra sl(2\2)((2)) and its quantized version U-q[sl(2\2)((2))]. We investigate the tensor product representation of the four-dimensional grade star representation for the fixed-point sub superalgebra U-q[osp(2\2)]. We work out the tensor product decomposition explicitly and find that the decomposition is not completely reducible. Associated with this four-dimensional grade star representation we derive two U-q[osp(2\2)] invariant R-matrices: one of them corresponds to U-q [sl(2\2)(2)] and the other to U-q [osp(2\2)((1))]. Using the R-matrix for U-q[sl(2\2)((2))], we construct a new U-q[osp(2\2)] invariant strongly correlated electronic model, which is integrable in one dimension. Interestingly this model reduces in the q = 1 limit, to the one proposed by Essler et al which has a larger sl(2\2) symmetry.
Resumo:
By generalizing the Reshetikhin and Semenov-Tian-Shansky construction to supersymmetric cases, we obtain the Drinfeld current realization for the quantum affine superalgebra U-q[gl(m\n)((1))]. We find a simple coproduct for the quantum current generators and establish the Hopf algebra structure of this super current algebra.
Resumo:
In daily cardiology practice, assessment of left ventricular (LV) global function using non-invasive imaging remains central for the diagnosis and follow-up of patients with cardiovascular diseases. Despite the different methodologies currently accessible for LV segmentation in cardiac magnetic resonance (CMR) images, a fast and complete LV delineation is still limitedly available for routine use. In this study, a localized anatomically constrained affine optical flow method is proposed for fast and automatic LV tracking throughout the full cardiac cycle in short-axis CMR images. Starting from an automatically delineated LV in the end-diastolic frame, the endocardial and epicardial boundaries are propagated by estimating the motion between adjacent cardiac phases using optical flow. In order to reduce the computational burden, the motion is only estimated in an anatomical region of interest around the tracked boundaries and subsequently integrated into a local affine motion model. Such localized estimation enables to capture complex motion patterns, while still being spatially consistent. The method was validated on 45 CMR datasets taken from the 2009 MICCAI LV segmentation challenge. The proposed approach proved to be robust and efficient, with an average distance error of 2.1 mm and a correlation with reference ejection fraction of 0.98 (1.9 ± 4.5%). Moreover, it showed to be fast, taking 5 seconds for the tracking of a full 4D dataset (30 ms per image). Overall, a novel fast, robust and accurate LV tracking methodology was proposed, enabling accurate assessment of relevant global function cardiac indices, such as volumes and ejection fraction.
Resumo:
We study the singular Bott-Chern classes introduced by Bismut, Gillet and Soulé. Singular Bott-Chern classes are the main ingredient to define direct images for closed immersions in arithmetic K-theory. In this paper we give an axiomatic definition of a theory of singular Bott-Chern classes, study their properties, and classify all possible theories of this kind. We identify the theory defined by Bismut, Gillet and Soulé as the only one that satisfies the additional condition of being homogeneous. We include a proof of the arithmetic Grothendieck-Riemann-Roch theorem for closed immersions that generalizes a result of Bismut, Gillet and Soulé and was already proved by Zha. This result can be combined with the arithmetic Grothendieck-Riemann-Roch theorem for submersions to extend this theorem to arbitrary projective morphisms. As a byproduct of this study we obtain two results of independent interest. First, we prove a Poincaré lemma for the complex of currents with fixed wave front set, and second we prove that certain direct images of Bott-Chern classes are closed.
Resumo:
The effect of multiple immersions on Haemagogus janthinomys , Haemagogus leucocelaenus , Aedes albopictus and Ochlerotatus terrens eggs was studied. Eggs were collected in April, June, October and December of 2011 in Minas Gerais, Brazil. Most of the Aedes and Ochlerotatus eggs hatched upon the first immersion, while Haemagogus eggs showed a varied instalment hatching response. The number of immersions required for hatching increased for eggs collected closer to the dry winter season.