20 resultados para Aerothermodynamics.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photocopy. [Springfield, Va. : National Technical Information Service, 1978]. -- 2 v.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study focused on simulating a trajectory point towards the end of the first experimental heatshield of the FIRE II vehicle, at a total flight time of 1639.53s. Scale replicas were sized according to binary scaling and instrumented with thermocouples for testing in the X1 expansion tube, located at The University of Queensland. Correlation of flight to experimental data was achieved through the separation, and independent treatment of the heat modes. Preliminary investigation indicates that the absolute value of radiant surface flux is conserved between two binary scaled models, whereas convective heat transfer increases with the length scale. This difference in the scaling techniques result in the overall contribution of radiative heat transfer diminishing to less than 1% in expansion tubes from a flight value of approximately 9-17%. From empirical correlation's it has been shown that the St √Re number decreases, under special circumstances, in expansion tubes by the percentage radiation present on the flight vehicle. Results obtained in this study give a strong indication that the relative radiative heat transfer contribution in the expansion tube tests is less than that in flight, supporting the analysis that the absolute value remains constant with binary scaling.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study focuses on a specific engine, i.e., a dual-spool, separate-flow turbofan engine with an Interstage Turbine Burner (ITB). This conventional turbofan engine has been modified to include a secondary isobaric burner, i.e., ITB, in a transition duct between the high-pressure turbine and the low-pressure turbine. The preliminary design phase for this modified engine starts with the aerothermodynamics cycle analysis is consisting of parametric (i.e., on-design) and performance (i.e., off-design) cycle analyses. In parametric analysis, the modified engine performance parameters are evaluated and compared with baseline engine in terms of design limitation (maximum turbine inlet temperature), flight conditions (such as flight Mach condition, ambient temperature and pressure), and design choices (such as compressor pressure ratio, fan pressure ratio, fan bypass ratio etc.). A turbine cooling model is also included to account for the effect of cooling air on engine performance. The results from the on-design analysis confirmed the advantage of using ITB, i.e., higher specific thrust with small increases in thrust specific fuel consumption, less cooling air, and less NOx production, provided that the main burner exit temperature and ITB exit temperature are properly specified. It is also important to identify the critical ITB temperature, beyond which the ITB is turned off and has no advantage at all. With the encouraging results from parametric cycle analysis, a detailed performance cycle analysis of the identical engine is also conducted for steady-stateengine performance prediction. The results from off-design cycle analysis show that the ITB engine at full throttle setting has enhanced performance over baseline engine. Furthermore, ITB engine operating at partial throttle settings will exhibit higher thrust at lower specific fuel consumption and improved thermal efficiency over the baseline engine. A mission analysis is also presented to predict the fuel consumptions in certain mission phases. Excel macrocode, Visual Basic for Application, and Excel neuron cells are combined to facilitate Excel software to perform these cycle analyses. These user-friendly programs compute and plot the data sequentially without forcing users to open other types of post-processing programs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"The technique of modulation, or variable coefficients, is discussed and the analytical formulation is reviewed. Representative numerical results of the use of modulation are shown for the lifting and nonlifting cases. These results include the effects of modulation on peak acceleration, entry corridor, and heat absorption. Results are given for entry at satellite speed and escape speed. The indications are that coefficient modulation on a vehicle with good lifting capability offers the possibility of sizable loading reductions or, alternatively, wider corridors; thus, steep entries become practical from the loading standpoint. The amount of steepness depends on the acceptable heating penalty. The price of sizable fractions of the possible gains does not appear to be excessive."

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Performing organization (under Contract or Grant no. F33615-71-C-1215): Aerotherm Division/Acurex Corporation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"Contract no. Nonr 839 (18). Project No. NR 064-298."