998 resultados para Aerospace control


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper considers the question of designing a fully image-based visual servo control for a class of dynamic systems. The work is motivated by the ongoing development of image-based visual servo control of small aerial robotic vehicles. The kinematics and dynamics of a rigid-body dynamical system (such as a vehicle airframe) maneuvering over a flat target plane with observable features are expressed in terms of an unnormalized spherical centroid and an optic flow measurement. The image-plane dynamics with respect to force input are dependent on the height of the camera above the target plane. This dependence is compensated by introducing virtual height dynamics and adaptive estimation in the proposed control. A fully nonlinear adaptive control design is provided that ensures asymptotic stability of the closed-loop system for all feasible initial conditions. The choice of control gains is based on an analysis of the asymptotic dynamics of the system. Results from a realistic simulation are presented that demonstrate the performance of the closed-loop system. To the author's knowledge, this paper documents the first time that an image-based visual servo control has been proposed for a dynamic system using vision measurement for both position and velocity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study, we proposed an adaptive fuzzy multi-surface sliding control (AFMSSC) for trajectory tracking of 6 degrees of freedom inertia coupled aerial vehicles with multiple inputs and multiple outputs (MIMO). It is shown that an adaptive fuzzy logic-based function approximator can be used to estimate the system uncertainties and an iterative multi-surface sliding control design can be carried out to control flight. Using AFMSSC on MIMO autonomous flight systems creates confluent control that can account for both matched and mismatched uncertainties, system disturbances and excitation in internal dynamics. It is proved that the AFMSSC system guarantees asymptotic output tracking and ultimate uniform boundedness of the tracking error. Simulation results are presented to validate the analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Informatik- und insbesondere Programmierunterricht sind heute ein wichtiger Bestandteil der schulischen Ausbildung. Vereinfachte Entwicklungsumgebungen, die auf die Abstraktion typischer Programmierkonzepte in Form von grafischen Bausteinen setzen, unterstützen diesen Trend. Zusätzliche Attraktivität wird durch die Verwendung exotischer Laufzeitumgebungen (z. B. Roboter) geschaffen. Die in diesem Paper vorgestellte Plattform “ScratchDrone” führt ergänzend zu diesen Angeboten eine moderne Flugdrohne als innovative Laufzeitumgebung für Scratch-Programme ein. Die Programmierung kann dabei dank modularer Systemarchitektur auf verschiedenen Abstraktionsebenen erfolgen, abhängig vom Lernfortschritt der Schüler. Kombiniert mit einem mehrstufigen didaktischen Modell, der Herausforderung der Bewegung im 3D-Raum sowie der natürlichen menschlichen Faszination für das Fliegen wird so eine hohe Lernmotivation bei jungen Programmieranfängern erreicht.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis establishes performance properties for approximate filters and controllers that are designed on the basis of approximate dynamic system representations. These performance properties provide a theoretical justification for the widespread application of approximate filters and controllers in the common situation where system models are not known with complete certainty. This research also provides useful tools for approximate filter designs, which are applied to hybrid filtering of uncertain nonlinear systems. As a contribution towards applications, this thesis also investigates air traffic separation control in the presence of measurement uncertainties.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An approximate dynamic programming (ADP)-based suboptimal neurocontroller to obtain desired temperature for a high-speed aerospace vehicle is synthesized in this paper. A I-D distributed parameter model of a fin is developed from basic thermal physics principles. "Snapshot" solutions of the dynamics are generated with a simple dynamic inversion-based feedback controller. Empirical basis functions are designed using the "proper orthogonal decomposition" (POD) technique and the snapshot solutions. A low-order nonlinear lumped parameter system to characterize the infinite dimensional system is obtained by carrying out a Galerkin projection. An ADP-based neurocontroller with a dual heuristic programming (DHP) formulation is obtained with a single-network-adaptive-critic (SNAC) controller for this approximate nonlinear model. Actual control in the original domain is calculated with the same POD basis functions through a reverse mapping. Further contribution of this paper includes development of an online robust neurocontroller to account for unmodeled dynamics and parametric uncertainties inherent in such a complex dynamic system. A neural network (NN) weight update rule that guarantees boundedness of the weights and relaxes the need for persistence of excitation (PE) condition is presented. Simulation studies show that in a fairly extensive but compact domain, any desired temperature profile can be achieved starting from any initial temperature profile. Therefore, the ADP and NN-based controllers appear to have the potential to become controller synthesis tools for nonlinear distributed parameter systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This Special Issue presents a selection of papers initially presented at the 11th International Conference on Vibration Problems (ICOVP-2013), held from 9 to 12 September 2013 in Lisbon, Portugal. The main topics of this Special Issue are linear and, mainly, nonlinear dynamics, chaos and control of systems and structures and their applications in different field of science and engineering. According to the goal of the Special Issue, the selected contributions are divided into three major parts: “Vibration Problems in Vertical Transportation Systems”, “Nonlinear Dynamics, Chaos and Control of Elastic Structures” and “New Strategies and Challenges for Aerospace and Ocean Structures Dynamics and Control”.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new control scheme has been presented in this thesis. Based on the NonLinear Geometric Approach, the proposed Active Control System represents a new way to see the reconfigurable controllers for aerospace applications. The presence of the Diagnosis module (providing the estimation of generic signals which, based on the case, can be faults, disturbances or system parameters), mean feature of the depicted Active Control System, is a characteristic shared by three well known control systems: the Active Fault Tolerant Controls, the Indirect Adaptive Controls and the Active Disturbance Rejection Controls. The standard NonLinear Geometric Approach (NLGA) has been accurately investigated and than improved to extend its applicability to more complex models. The standard NLGA procedure has been modified to take account of feasible and estimable sets of unknown signals. Furthermore the application of the Singular Perturbations approximation has led to the solution of Detection and Isolation problems in scenarios too complex to be solved by the standard NLGA. Also the estimation process has been improved, where multiple redundant measuremtent are available, by the introduction of a new algorithm, here called "Least Squares - Sliding Mode". It guarantees optimality, in the sense of the least squares, and finite estimation time, in the sense of the sliding mode. The Active Control System concept has been formalized in two controller: a nonlinear backstepping controller and a nonlinear composite controller. Particularly interesting is the integration, in the controller design, of the estimations coming from the Diagnosis module. Stability proofs are provided for both the control schemes. Finally, different applications in aerospace have been provided to show the applicability and the effectiveness of the proposed NLGA-based Active Control System.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The automation of various aspects of air traffic management has many wide-reaching benefits including: reducing the workload for Air Traffic Controllers; increasing the flexibility of operations (both civil and military) within the airspace system through facilitating automated dynamic changes to en-route flight plans; ensuring safe aircraft separation for a complex mix of airspace users within a highly complex and dynamic airspace management system architecture. These benefits accumulate to increase the efficiency and flexibility of airspace use(1). Such functions are critical for the anticipated increase in volume of manned and unmanned aircraft traffic. One significant challenge facing the advancement of airspace automation lies in convincing air traffic regulatory authorities that the level of safety achievable through the use of automation concepts is comparable to, or exceeds, the accepted safety performance of the current system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an implementation of an aircraft pose and motion estimator using visual systems as the principal sensor for controlling an Unmanned Aerial Vehicle (UAV) or as a redundant system for an Inertial Measure Unit (IMU) and gyros sensors. First, we explore the applications of the unified theory for central catadioptric cameras for attitude and heading estimation, explaining how the skyline is projected on the catadioptric image and how it is segmented and used to calculate the UAV’s attitude. Then we use appearance images to obtain a visual compass, and we calculate the relative rotation and heading of the aerial vehicle. Additionally, we show the use of a stereo system to calculate the aircraft height and to measure the UAV’s motion. Finally, we present a visual tracking system based on Fuzzy controllers working in both a UAV and a camera pan and tilt platform. Every part is tested using the UAV COLIBRI platform to validate the different approaches, which include comparison of the estimated data with the inertial values measured onboard the helicopter platform and the validation of the tracking schemes on real flights.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, unmanned aerial vehicles (UAVs) have been widely used in combat, and their potential applications in civil and commercial roles are also receiving considerable attention by industry and the research community. There are numerous published reports of UAVs used in Earth science missions [1], fire-fighting [2], and border security [3] trials, with other speculative deployments, including applications in agriculture, communications, and traffic monitoring. However, none of these UAVs can demonstrate an equivalent level of safety to manned aircraft, particularly in the case of an engine failure, which would require an emergency or forced landing. This may be arguably the main factor that has prevented these UAV trials from becoming full-scale commercial operations, as well as restricted operations of civilian UAVs to only within segregated airspace.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Typical quadrotor aerial robots used in research weigh inlMMLBox and carry payloads measured in hundreds of grams. Several obstacles in design and control must be overcome to cater for expected industry demands that push the boundaries of existing quadrotor performance. The X-4 Flyer, a 4 kg quadrotor with a 1 kg payload, is intended to be prototypical of useful commercial quadrotors. The custom-built craft uses tuned plant dynamics with an onboard embedded attitude controller to stabilise flight. Independent linear SISO controllers were designed to regulate flyer attitude. The performance of the system is demonstrated in indoor and outdoor flight.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fast thrust changes are important for authoritive control of VTOL micro air vehicles. Fixed-pitch rotors that alter thrust by varying rotor speed require high-bandwidth control systems to provide adequate performace. We develop a feedback compensator for a brushless hobby motor driving a custom rotor suitable for UAVs. The system plant is identified using step excitation experiments. The aerodynamic operating conditions of these rotors are unusual and so experiments are performed to characterise expected load disturbances. The plant and load models lead to a proportional controller design capable of significantly decreasing rise-time and propagation of disturbances, subject to bus voltage constraints.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we describe a low-cost flight control system for a small (60 class) helicopter which is part of a larger project to develop an autonomous flying vehicle. Our approach differs from that of others in not using an expensive inertial/GPS sensing system. The primary sensors for vehicle stabilization are a low-cost inertial sensor and a pair of CMOS cameras. We describe the architecture of our flight control system, the inertial and visual sensing subsystems and present some flight control results.