988 resultados para Aeromonas spp.
Resumo:
Between April and October 2002, thirty fortnightly collections of oysters (Crassostrea rhizophorea) from a natural oyster bed at the Cocó River estuary in the Sabiaguaba region (Fortaleza, Ceará, Brazil) were carried out, aiming to isolate Aeromonas spp. strains. Oyster samples were submitted to the direct plating (DP) and the presence/absence (P/A) methods. Aeromonas were identified in 15 (50%) samples analyzed by the DP method and in 13 (43%) analyzed by the P/A method. A. caviae, A. eucrenophila, A. media, A. sobria, A. trota, A. veronii bv. sobria, A. veronii bv. veronii and Aeromonas sp. were isolated. The predominant species was A. veronii (both biovars), which was identified in 13 (43%) samples, followed by A. media in 11 (37%) and A. caviae in seven (23%). From the 59 strains identified, 28 (48%) presented resistance to at least one of the eight antibiotics tested.
Resumo:
This work aimed to assess pathogenic potential and clonal relatedness of Aeromonas sp. and Vibrio cholerae isolates recovered during a diarrhea outbreak in Brazil. Clinical and environmental isolates were investigated for the presence of known pathogenic genes and clonal relatedness was assessed by intergenic spacer region (ISR) 16S-23S amplification. Four Aeromonas genes (lip, exu, gcat, flaA/B) were found at high overall frequency in both clinical and environmental isolates although the lip gene was specifically absent from selected species. A fifth gene, aerA, was rarely found in A. caviae, the most abundant species. The ISR profile revealed high heterogeneity among the Aeromonas isolates and no correlation with species identification. In contrast, in all the V. cholerae isolates the four genes investigated (ctxA, tcpA, zot and ace) were amplified and revealed homogeneous ISR and RAPD profiles. Although Aeromonas isolates were the major enteric pathogen recovered, their ISR profiles are not compatible with a unique cause for the diarrhea events, while the clonal relationship clearly implicates V. cholerae in those cases from which it was isolated. These results reinforce the need for a better definition of the role of aeromonads in diarrhea and whether they benefit from co-infection with V. cholerae.
Resumo:
Dissertation to obtain a Master Degree in Molecular Genetics and Biomedicine
Resumo:
Aeromonas spp é reconhecida como patogênica para o homem após o consumo de água e alimentos contaminados. Na presente investigação, foram avaliadas 2.323 amostras de swabs retais de neonatos hospitalizados no Rio de Janeiro objetivando o isolamento de Aeromonas. As amostras foram coletadas e enviadas ao Laboratório de Referência Nacional de Cólera e outras enteroinfecções bacterianas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz. Os swabs foram submetidos ao enriquecimento em água peptonada alcalina adicionada de 1% de cloreto de sódio (NaCl) e água peptonada alcalina adicionada de 3% de NaCl (37ºC/18-24h) e semeadas em agar seletivo para Pseudomonas aeromonas (Agar GSP). Foram isoladas 56 cepas de Aeromonas assim distribuídas: Aeromonas caviae (42,8%), Aeromonas media (25%), Aeromonas veronii biogrupo sobria (10,7%), Aeromonas hydrophila (9%), Aeromonas veronii biogrupo veronii (5,3%), Aeromonas sobria (1,8%), Aeromonas jandaei (1,8%), Aeromonas schubertii (1,8%) e Aeromonas sp (1,8%). Foi observada resistência a uma ou mais drogas antimicrobianas em 26,8% das cepas. Considerando a relevância de Aeromonas torna-se urgente alertar sobre sua importância para o controle de infecções hospitalares.
Resumo:
A total of 221 strains of Aeromonas species isolated in Mexico from clinical (161), environmental (40), and food (20) samples were identified using the automated system bioMérieux-Vitek®. Antisera for serogroups O1 to 044 were tested using the Shimada and Sakazaki scheme. The K1 antigen was examined using as antiserum the O7:K1C of Escherichia coli. Besides, we studied the antimicrobial patterns according to Vitek AutoMicrobic system. Among the 161 clinical strains 60% were identified as A. hydrophila, 20.4% as A. caviae, and 19.25% as A. veronii biovar sobria. Only A. hydrophila and A. veronii biovar sobria were found in food (55 and 90% respectively) and environmental sources (45 and 10% respectively). Using "O" antisera, only 42.5% (94/221) of the strains were serologically identified, 55% (121/221) were non-typable, and 2.5% (6/221) were rough strains. Twenty-two different serogroups were found, O14, O16, O19, O22, and O34 represented 60% of the serotyped strains. More than 50% of Aeromonas strain examined (112/221) expressed K1 encapsulating antigen; this characteristic was predominant among Aeromonas strains of clinical origin. Resistance to ampicillin/sulbactam and cephazolin was detected in 100 and 67% of Aeromonas strain tested for their susceptibility to antibiotics. In conclusion, antibiotic-resistant Aeromonas species that possess the K1 encapsulating antigen and represent serogroups associated with clinical syndrome in man are not uncommon among Aeromonas strains isolated from clinical, food and environmental sources in Mexico.
Resumo:
Marine microorganisms, including Aeromonas, are a source of compounds for drug development that have generated great expectations in the last decades. Aeromonas infections produce septicaemia, and ulcerative and haemorrhagic diseases in fish. Among the pathogenic factors associated with Aeromonas, the lipopolysaccharides (LPS), a surface glyconconjugate unique to Gram-negative bacteria consisting of lipid A (lipid anchor of the molecule), core oligosaccharide and O-specific polysaccharide (O antigen), are key elicitors of innate immune responses. The chemical structure of these three parts has been characterized in Aeromonas. Based on the high variability of repeated units of O-polysaccharides, a total of 97 O-serogroups have been described in Aeromonas species, of which four of them (O:11; O:16; O:18 and O:34) account for more than 60% of the septicemia cases. The core of LPS is subdivided into two regions, the inner (highly conserved) and the outer core. The inner core of Aeromonas LPS is characterized by the presence of 3-deoxy-D-manno-oct-2-ulosonic (ketodeoxyoctonic) acid (Kdo) and L-glycero-D-manno-Heptoses (L,D-Hep), which are linked to the outer core, characterized by the presence of Glc, GlcN, Gal, and GalNAc (in Aeromonas salmonicida), D,D-Hep (in Aeromonas salmonicida), and L,D-Hep (in Aeromonas hydrophila). The biological relevance of these differences in the distal part of the outer core among these species has not been fully assessed to date. The inner core is attached to the lipid A, a highly conserved structure that confers endotoxic properties to the LPS when the molecule is released in blood from lysed bacteria, thus inducing a major systemic inflammatory response known as septic or endotoxic shock. In Aeromonas salmonicida subsp. salmonicida the Lipid A components contain three major lipid A molecules, differing in acylation patterns corresponding to tetra-, penta- and hexaacylated lipid A species and comprising of 4′-monophosphorylated β-2-amino-2-deoxy-D-glucopyranose-(1→6)-2-amino-2-deoxy-D-glucopyranose disaccharide. In the present review, we discuss the structure-activity relationships of Aeromonas LPS, focusing on its role in bacterial pathogenesis and its possible applications.
Resumo:
Marine microorganisms, including Aeromonas, are a source of compds. for drug development that have generated great expectations in the last decades. Aeromonas infections produce septicemia, and ulcerative and haemorrhagic diseases in fish. Among the pathogenic factors assocd. with Aeromonas, the lipopolysaccharides (LPS), a surface glyconconjugate unique to Gram-neg. bacteria consisting of lipid A (lipid anchor of the mol.), core oligosaccharide and O-specific polysaccharide (O antigen), are key elicitors of innate immune responses. The chem. structure of these three parts has been characterized in Aeromonas. Based on the high variability of repeated units of O-polysaccharides, a total of 97 O-serogroups have been described in Aeromonas species, of which four of them (O:11; O:16; O:18 and O:34) account for more than 60% of the septicemia cases. The core of LPS is subdivided into two regions, the inner (highly conserved) and the outer core. The inner core of Aeromonas LPS is characterized by the presence of 3-deoxy-d-manno-oct-2-ulosonic (ketodeoxyoctonic) acid (Kdo) and l-glycero-d-manno-Heptoses (l,d-Hep), which are linked to the outer core, characterized by the presence of Glc, GlcN, Gal, and GalNAc (in Aeromonas salmonicida), d,d-Hep (in Aeromonas salmonicida), and l,d-Hep (in Aeromonas hydrophila). The biol. relevance of these differences in the distal part of the outer core among these species has not been fully assessed to date. The inner core is attached to the lipid A, a highly conserved structure that confers endotoxic properties to the LPS when the mol. is released in blood from lysed bacteria, thus inducing a major systemic inflammatory response known as septic or endotoxic shock. In Aeromonas salmonicida subsp. salmonicida the Lipid A components contain three major lipid A mols., differing in acylation patterns corresponding to tetra-, penta- and hexa-acylated lipid A species and comprising of 4'-monophosphorylated β-2-amino-2-deoxy-d-glucopyranose-(1→6)-2-amino-2-deoxy-d-glucopyranose disaccharide. In the present review, we discuss the structure-activity relationships of Aeromonas LPS, focusing on its role in bacterial pathogenesis and its possible applications.
Resumo:
Marine microorganisms, including Aeromonas, are a source of compds. for drug development that have generated great expectations in the last decades. Aeromonas infections produce septicemia, and ulcerative and haemorrhagic diseases in fish. Among the pathogenic factors assocd. with Aeromonas, the lipopolysaccharides (LPS), a surface glyconconjugate unique to Gram-neg. bacteria consisting of lipid A (lipid anchor of the mol.), core oligosaccharide and O-specific polysaccharide (O antigen), are key elicitors of innate immune responses. The chem. structure of these three parts has been characterized in Aeromonas. Based on the high variability of repeated units of O-polysaccharides, a total of 97 O-serogroups have been described in Aeromonas species, of which four of them (O:11; O:16; O:18 and O:34) account for more than 60% of the septicemia cases. The core of LPS is subdivided into two regions, the inner (highly conserved) and the outer core. The inner core of Aeromonas LPS is characterized by the presence of 3-deoxy-d-manno-oct-2-ulosonic (ketodeoxyoctonic) acid (Kdo) and l-glycero-d-manno-Heptoses (l,d-Hep), which are linked to the outer core, characterized by the presence of Glc, GlcN, Gal, and GalNAc (in Aeromonas salmonicida), d,d-Hep (in Aeromonas salmonicida), and l,d-Hep (in Aeromonas hydrophila). The biol. relevance of these differences in the distal part of the outer core among these species has not been fully assessed to date. The inner core is attached to the lipid A, a highly conserved structure that confers endotoxic properties to the LPS when the mol. is released in blood from lysed bacteria, thus inducing a major systemic inflammatory response known as septic or endotoxic shock. In Aeromonas salmonicida subsp. salmonicida the Lipid A components contain three major lipid A mols., differing in acylation patterns corresponding to tetra-, penta- and hexa-acylated lipid A species and comprising of 4'-monophosphorylated β-2-amino-2-deoxy-d-glucopyranose-(1→6)-2-amino-2-deoxy-d-glucopyranose disaccharide. In the present review, we discuss the structure-activity relationships of Aeromonas LPS, focusing on its role in bacterial pathogenesis and its possible applications.
Resumo:
O ecossistema aquático é o habitat de mexilhões (Perna perna), animais filtradores que refletem a qualidade ambiental através de análise microbiológica de sua carne. No presente trabalho avaliou-se a presença de patógenos emergentes (Aeromonas hydrophila e Plesiomonas shigelloides), em mexilhões in natura e pré-cozidos coletados por pescadores da Estação Experimental de Cultivo de Mexilhões situada em Jurujuba, Niterói, Rio de Janeiro. Foram analisadas 86 amostras de mexilhões (43 in natura e 43 pré-cozidos) as quais foram submetidas a enriquecimento em Água Peptonada Alcalina (APA) acrescida de 1 e 3% de Cloreto de Sódio (NaCl) e em solução Salina de Butterfield, incubadas a 37ºC por 24 horas. Em seguida, foram semeadas em Ágar Seletivo para Pseudomonas-Aeromonas (GSP), Ágar Tiossulfato Citrato Bile Sacarose (TCBS) e Ágar Inositol Bile Verde Brilhante (IBB). A análise geral dos resultados permitiu a identificação de Areomonas spp e Plesiomonas shigelloides em 86% das amostras de mexilhões in natura e pré-cozidas avaliadas. A posterior caracterização bioquímica permitiu a identificação das espécies Aeromonas media (37,10%), A. hydrophila (15,50%), A. caviae (14,80%), A. veronii biogrupo veronii (11,60%), Aeromonas sp. (7,36%), A. sobria (4,20%), A. trota (4,20%), A. schubertii (1,31%), A. jandaei (1,31%), A. veronii biogrupo sobria (0,52%) e Plesiomonas shigelloides (2,10%). A relevância epidemiológica desses microrganismos em casos de gastrenterite humana, após consumo de mexilhões crus ou parcialmente cozidos, revela a importância de alertar as autoridades de Saúde Pública no Brasil, sobre a presença desses patógenos na cadeia alimentar e seus riscos para a saúde humana.
Resumo:
Among the widely distributed bacterial agents in the aquatic ecosystem, can be outstanding the family Aeromonadaceae detected such in fish as in the water of this system. This study intended to verify the occurrence of Aeromonas spp. in pond water of fishfarms located in Occidental Lowland Region of Maranhao. Twelve properties located in Pinheiro, Palmeirandia and Perimirim cities had been selected. The harvest of the samples occurred in the period from October, 2008 to March, 2009. A total of 48 pond water samples were harvested. Four water samples of each fishfarm. Aeromonas were confirmed in 100% of the samples. The 89 isolate identified had been classified in three species, A. hydrophila (88%), A. caviae (9%), A. veronii sobria (3%). The pond waters of the fishfarms analyzed presented contamination with potentially pathogenic species of aeromonas which represents risk for people's health, especially for the organisms cultivated in these properties.
Resumo:
The occurrence of Aeromonas spp., Vibrio cholerae, and Plesiomonas shigelloides in fresh water from various sources in Araraquara, State of São Paulo, Brazil was determined. Samples from ten distinct irrigation systems used in vegetable cultivation, from five distinct streams, from two reservoirs, from one artificial lake, and from three distinct springs were analyzed. All isolates were serotyped and tested for hemolysin, cytotoxin, heat-stable (ST) and heat-labile (LT) enterotoxins production; presence of plasmid; autoagglutination and drug resistance. V. cholerae isolates were also tested for cholera enterotoxin (CT) production, and Aeromonas isolates for suicide phenomenon. No P. shigelloides was found. V. cholerae non 01 was found in five irrigation water samples and in three stream samples. Aeromonas sp. were isolated in two samples of irrigation water, in three streams, and in one reservoir. All the V. cholerae and Aeromonas isolates were positive for P-hemolysin production, and all Aeromonas isolates were positive for suicide phenomenon; cytotoxic activities were observed in two Aeromonas strains. Cholera enterotoxin was not found in eight V. cholerae non-01 isolates tested by the Y-1 mouse adrenal cell. All isolates were also negative for the other virulence markers. Ii cholelerae isolates were found to be sensitive to the majority of drugs tested, while Aeromonas strains presented multiple drug resistance..
Resumo:
The incidence of Vibrio cholerae, Aeromonas spp, and Plesiomonas shigelloides was determined in Rater samples from Cambe Stream. The samples were collected from seven different sites. The serogroups, virulence markers and drug resistance profiles were also evaluated. Twelve. Aer. hydrophila, 12 Aer. caviae, eight Aer. sobria, seven Ple. shigelloides and two V. cholerae non-O1 were isolated. They belonged to different serogroups and all produced haemolysis in different assays. Five of the Aeromonas strains and one of V, cholerae non-O1 were positive for enterotoxin activity. Haemagglutination and its inhibition, using erythrocytes of different origins, was variable for Aeromonas spp and V. cholerae, while none of the Plt. shigelloides haemagglutinated in association with any type of erythrocyte. All isolates exhibited multiple drug resistance. These results indicate that the occurrence of V. cholerae non-O1, Aeromonas spp, and Ple. shigelloides, in water used for vegetable irrigation, human recreation and animal consumption, among others, represents a potential risk for humans.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)