770 resultados para Aerodynamics, Supersonic


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bibliography: p. 385-387.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Includes bibliography.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Includes bibliographies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Includes bibliographical references.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

"Work performed for the Air Force Flight Dynamics Laboratory...by the Aerodynamics Research Department of the Northrup Corporation, Aircraft Division."

Relevância:

70.00% 70.00%

Publicador:

Resumo:

"Carried out by the Fluid Mechanics Section of the Aeronutronic Division of the Ford Aerospace & Communications Corporation."

Relevância:

70.00% 70.00%

Publicador:

Resumo:

"Aeronautical Research Laboratory, Contract no. AF 33(616)-2170, Project no. 1366."

Relevância:

70.00% 70.00%

Publicador:

Resumo:

"This report appears as an appendix to the National Applied Mathematics Laboratories Quarterly report of projects and publications, January through March 1952."

Relevância:

70.00% 70.00%

Publicador:

Resumo:

"AFOSR TN-58-625. ASTIA doc. no. AD 162 155."

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Jet-cooled, laser-induced phosphorescence excitation spectra (LIP) of thioacetaldehyde CH3CHS, CH3CDS, CD3CHS and CD3CDS have been observed over the region 15800 - 17300 cm"^ in a continuous pyrolysis jet. The vibronic band structure of the singlet-triplet n -* n* transition were attributed to the strong coupling of the methyl torsion and aldehydic hydrogen wagging modes . The vibronic peaks have been assigned in terms of two upper electronic state (T^) vibrations; the methyl torsion mode v^g, and the aldehydic hydrogen wagging mode v^^. The electronic origin O^a^ is unequivocally assigned as follows: CH3CHS (16294.9 cm"'' ), CH3CDS (16360.9 cm"'' ), CD3CHS (16299.7 cm"^ ), and CD3CDS (16367.2 cm"'' ). To obtain structural and dynamical information about the two electronic states, potential surfaces V(e,a) for the 6 (methyl torsion) and a (hydrogen wagging) motions were generated by ab initio quantum mechanical calculations with a 6-3 IG* basis in which the structural parameters were fully relaxed. The kinetic energy coefficients BQ(a,e) , B^(a,G) , and the cross coupling term B^(a,e) , were accurately represented as functions of the two active coordinates, a and 9. The calculations reveal that the molecule adopts an eclipsed conformation for the lower Sq electronic state (a=0°,e=0"') with a barrier height to internal rotation of 541.5 cm"^ which is to be compared to 549.8 cm"^ obtained from the microwave experiment. The conformation of the upper T^ electronic state was found to be staggered (a=24 . 68° ,e=-45. 66° ) . The saddle point in the path traced out by the aldehyde wagging motion was calculated to be 175 cm"^ above the equilibrium configuration. The corresponding maxima in the path taken by methyl torsion was found to be 322 cm'\ The small amplitude normal vibrational modes were also calculated to aid in the assignment of the spectra. Torsional-wagging energy manifolds for the two states were derived from the Hamiltonian H(a,e) which was solved variationally using an extended two dimensional Fourier expansion as a basis set. A torsionalinversion band spectrum was derived from the calculated energy levels and Franck-Condon factors, and was compared with the experimental supersonic-jet spectra. Most of the anomalies which were associated with the interpretation of the observed spectrum could be accounted for by the band profiles derived from ab initio SCF calculations. A model describing the jet spectra was derived by scaling the ab initio potential functions. The global least squares fitting generates a triplet state potential which has a minimum at (a=22.38° ,e=-41.08°) . The flatter potential in the scaled model yielded excellent agreement between the observed and calculated frequency intervals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

"It is shown that adequate means are available for calculating inviscid direct and induced pressures on simple axisymmetric bodies at zero angle of attack. The extent to which viscous effects can alter these predictions is indicated. It is also shown that inviscid induced pressures can significantly affect the stability of blunt, two-dimensional flat wings at low angles of attack. However, at high angles of attack, the inviscid induced pressure effects are negligible."