982 resultados para Aerodynamic loads


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wind-flow pattern over embankments involves an overexposure of the rolling stock travelling on them to wind loads. Windbreaks are a common solution for changing the flow characteristic in order to decrease unwanted effects induced by the presence of crosswind. The shelter effectiveness of a set of windbreaks placed over a railway twin-track embankment is experimentally analysed. A set of two-dimensional wind tunnel tests are undertaken and results corresponding to pressure tap measurements over a section of a typical high-speed train are herein presented.The results indicate that even small-height windbreaks provide sheltering effects to the vehicles. Also, eaves located at the windbreak tips seem to improve their sheltering effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta tesis doctoral se ha centrado en el estudio de las cargas aerodinámicas no estacionario en romos cuerpos o no aerodinámicos (bluff bodies). Con este objetivo se han identificado y analizado los siguientes puntos: -Caracterización del flujo medido con diferentes tipos de tubos de Pitot y anemómetro de hilo caliente en condiciones de flujo no estacionario inestable generado por un túnel aerodinamico de ráfagas. -Diseño e integración de los montajes experimentales requeridos para medir las cargas de viento internas y externas que actúan sobre los cuerpos romos en condiciones de flujo de viento con ráfagas. -Implementación de modelos matemáticos semi-empíricos basados en flujo potencial y las teorías fenomenológicas pertinentes para simular los resultados experimentales. -En diversan condiciones de flujo con ráfagas, la identificación y el análisis de la influencia de los parámetros obtenida a partir de los modelos teóricos desarrollados. -Se proponen estimaciones empíricas para averiguar los valores adecuados de los parámetros que influyente, mediante el ajuste de los resultados experimentales y los predichos teóricamente. Los montajes experimentales se has reakizado en un tunel aerodinamico de circuito abierto, provisto de baja velocidad, cámara de ensayes cerrada, un nuevo concepto de mecanismo generador de ráfaga sinusoidal, diseñado y construido en el Instituto de Microgravedad "Ignacio Da Riva" de la Universidad Politécnica de Madrid, (IDR / UPM). La principal característica de este túnel aerodynamico es la capacidad de generar un flujo con un perfil de velocidad uniforme y una fluctuación sinusoidal en el tiempo. Se han realizado pruebas experimentales para estudiar el efecto de los flujos no estacionarios en cuerpos romos situados en el suelo. Se han propuesto dos modelos teóricos para diterminar las cargas de presión externas e internas respectivamente. Con el fin de satisfacer la necesidad de la crea ráfagas de viento sinusoidales para comprobar las predicciones de los modelos teóricos, se han obtenido velocidades de hasta 30 m/s y frecuencias ráfaga de hasta 10 Hz. La sección de la cámara de ensayos es de 0,39 m x 0,54 m, dimensiónes adecuadas para llevar a cabo experimentos con modelos de ensayos. Se muestra que en la gama de parámetros explorados los resultados experimentales están en buen acuerdo con las predicciones de los modelos teóricos. Se han realizado pruebas experimentales para estudiar los efectos del flujo no estacionario, las cuales pueden ayudar a aclarar el fenómeno de las cargas de presión externa sobre los cuerpos romos sometidos a ráfagas de viento: y tambien para determinan las cargas de presión interna, que dependen del tamaño de los orificios de ventilación de la construcción. Por último, se ha analizado la contribución de los términos provenientes del flujo no estacionario, y se han caracterizado o los saltos de presión debido a la pérdida no estacionario de presión a través de los orificios de ventilación. ABSTRACT This Doctoral dissertation has been focused to study the unsteady aerodynamic loads on bluff bodies. To this aim the following points have been identified and analyzed: -Characterization of the flow measured with different types of Pitot tubes and hot wire anemometer at unsteady flow conditions generated by a gust wind tunnel. -Design and integrating of the experimental setups required to measure the internal and external wind loads acting on bluff bodies at gusty wind flow conditions. -Implementation of semi-empirical mathematical models based on potential flow and relevant phenomenological theories to simulate the experimental results.-At various gusty flow conditions, extracting and analyzing the influence of parameters obtained from the developed theoretical models. -Empirical estimations are proposed to find out suitable values of the influencing parameters, by fitting the experimental and theoretically predicted results. The experimental setups are performed in an open circuit, closed test section, low speed wind tunnel, with a new sinusoidal gust generator mechanism concept, designed and built at the Instituto de Microgravedad “Ignacio Da Riva” of the Universidad Politécnica de Madrid, (IDR/UPM). The main characteristic of this wind tunnel is the ability to generate a flow with a uniform velocity profile and a sinusoidal time fluctuation of the speed. Experimental tests have been devoted to study the effect of unsteady flows on bluff bodies lying on the ground. Two theoretical models have been proposed to measure the external and internal pressure loads respectively. In order to meet the need of creating sinusoidal wind gusts to check the theoretical model predictions, the gust wind tunnel maximum flow speed and, gust frequency in the test section have been limited to 30 m/s and 10 Hz, respectively have been obtained. The test section is 0.39 m × 0.54 m, which is suitable to perform experiments with testing models. It is shown that, in the range of parameters explored, the experimental results are in good agreement with the theoretical model predictions. Experimental tests have been performed to study the unsteady flow effects, which can help in clarifying the phenomenon of the external pressure loads on bluff bodies under gusty winds: and also to study internal pressure loads, which depend on the size of the venting holes of the building. Finally, the contribution of the unsteady flow terms in the theoretical model has been analyzed, and the pressure jumps due to the unsteady pressure losses through the venting holes have been characterized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parabolic reflectors, also known as parabolic troughs, are widely used in solar thermal power plants. This kind of power plants is usually located on desert climates, where the combined action of wind and dust can be of paramount importance. In some cases it becomes necessary to protect these devices from the joined wind and sand action, which is normally accomplished through solid windbreaks. In this paper the results of a wind tunnel test campaign, of a scale parabolic trough row having different windward windbreaks, are reported. The windbreaks herein considered consist of a solid wall with an upper porous fence. Different geometrical configurations, varying the solid wall height and the separation between the parabolic trough row and the windbreak have been considered. From the measured time series, both the mean and peak values of the aerodynamic loads were determined. As it would be expected, mean aerodynamic drag, as well as peak values, decrease as the distance between the windbreak and the parabolic increases, and after a threshold value, such drag loads increase with the distance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This brief communication concerns the unsteady aerodynamic external pressure loads acting on a semi-circular bluff body lying on a floor under wind gusts and describes the theoretical model, experimental setup, and experimental results obtained. The experimental setup is based on an open circuit, closed test section, low speed wind tunnel, which includes a sinusoidal gust generating mechanism, designed and built at the Instituto de Microgravedad “Ignacio Da Riva” of the Universidad Politécnica de Madrid (IDR/UPM). Based on the potential flow theory, a theoretical model has been proposed to analyse the problem, and experimental tests have been performed to study the unsteady aerodynamic loads on a semi-circular bluff body. By fitting the theoretical model predictions with the experimental results, influencing parameters of the unsteady aerodynamic loads are ascertained. The values of these parameters can help in clarifying the phenomenon of the external pressure loads on semi-circular bluff body under various gust frequencies. The theoretical model proposed allows the pressure variation to be split into two contributions, a quasi-steady term and an unsteady term with a simple physical meaning

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Presented in the paper are the details of a method for obtaining aerodynamic characteristics of pretensioned elastic membrane rectangular sailwings. This is a nonlinear problem governed by the membrane equation for the inflated sail and the lifting surface theory integral equation for aerodynamic loads on the sail. Assuming an admissible mode shape for the inflated elastic sail, an iterative procedure based on a doublet lattice method is employed to determine the inflated configuration as well as various aerodynamic characteristics. Application of the method is made to a typical nylon-cotton sailwing of AR = 6.0 and results are presented graphically to show the effect of various parameters. The results are found to tend to plane wing values when the pretensions are large in magnitude.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper describes the measurement of aerodynamic loads using fiber-optic strain gauge sensors and associated signal processors at hypersonic speeds in the 300mm hypersonic wind tunnel. at the Department of Aerospace Engineering, Indian Institute of Science. Fiber-optic sensors have been developed in USA since 1990, for variety of applications in experimental stress analysis, skin friction measurement in fluid flows, smart structures, smart materials, sensing of acoustic emission and more recently in the development of compact devices for measurement of displacement, stress/strain, pressure, temperature, acceleration etc. Our group at llSc has been playing a lead role in the use of these fiber - optic sensors for successful measurement of aerodynamic loads in wind tunnels and the first ever six-component wind tunnel strain gauge balance in the world based on fiber optic sensors was built at the Indian Institute of Science in the year 1999. We report here the results of our efforts in the development of an internal strain gauge balance for high-speed wind tunnel applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aerodynamic balances are employed in wind tunnels to estimate the forces and moments acting on the model under test. This paper proposes a methodology for the assessment of uncertainty in the calibration of an internal multi-component aerodynamic balance. In order to obtain a suitable model to provide aerodynamic loads from the balance sensor responses, a calibration is performed prior to the tests by applying known weights to the balance. A multivariate polynomial fitting by the least squares method is used to interpolate the calibration data points. The uncertainties of both the applied loads and the readings of the sensors are considered in the regression. The data reduction includes the estimation of the calibration coefficients, the predicted values of the load components and their corresponding uncertainties, as well as the goodness of fit.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The railway overhead (or catenary) is the system of cables responsible for providing electric current to the train. This system has been reported as wind-sensitive (Scanlon et al., 2000), and particularly to the occurrence of galloping phenomena. Galloping phenomena of the railway overhead consists of undamped cable oscillations triggered by aerodynamic forces acting on the contact wire. As is well known, aerodynamic loads on the contact wire depends on the incident flow mean velocity and the angle of attack. The presence of embankments or hills modifies both vertical velocities profiles and angles of attack of the flow (Paiva et al., 2009). The presence of these cross-wind related oscillations can interfere with the safe operation of the railway service (Johnson, 1996). Therefore a correct modelling of the phenomena is required to avoid these unwanted oscillations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This article deals with the effect of leading edge imperfections on the aerodynamic characteristics of a NACA 632-215 laminar aerofoil at low Reynolds numbers. Wind tunnel tests have been performed at different Reynolds numbers and angles of attack and global aerodynamic loads were measured. To perform these tests, a NACA 632-215 aerofoil was built up in two halves (corresponding to the upper side and to the lower side), the leading edge imperfection here considered being a slight displacement of half aerofoil with respect to the other. From experimental results, a quantitative measure of the influence of the leading edge displacement on the degradation of the aerofoil aerodynamic performances has been obtained. This allows the establishment of a criterion for an acceptance limit for this kind of imperfection

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents the experimental study developed on a prismatic beam with H section, sometimes used in bridges as suspenders, vertical bars or decks. The purpose of this study is to understand the physical behavior of the air around this type of section, in order to reduce the aerodynamic loads, the onset speed of galloping and even to avoid it. To achieve this, a study of the influence of all geometric parameters that define the section has been developed. Previously, the most interesting configurations have been selected using a smoke flow visualization technique in the wind-tunnel, then the corresponding static aerodynamic loads were measured, completed with dynamic tests and, finally, the parameters governing the phenomenon of galloping determined.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The paper provides a method applicable for the determination of flight loads for maneuvering aircraft, in which aerodynamic loads are calculated based on doublet lattice method, which contains three primary steps. Firstly, non-dimensional stability and control derivative coefficients are obtained through solving unsteady aerodynamics in subsonic flow based on a doublet lattice technical. These stability and control derivative coefficients are used in second step. Secondly, the simulation of aircraft dynamic maneuvers is completed utilizing fourth order Runge-Kutta method to solve motion equations in different maneuvers to gain response parameters of aircraft due to the motion of control surfaces. Finally, the response results calculated in the second step are introduced to the calculation of aerodynamic loads. Thus, total loads and loads distribution on different components of aircraft are obtained. According to the above method, abrupt pitching maneuvers, rolling maneuvers and yawing maneuvers are investigated respectively.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Damages during extreme wind events highlight the weaknesses of mechanical fasteners at the roof-to-wall connections in residential timber frame buildings. The allowable capacity of the metal fasteners is based on results of unidirectional component testing that do not simulate realistic tri-axial aerodynamic loading effects. The first objective of this research was to simulate hurricane effects and study hurricane-structure interaction at full-scale, facilitating better understanding of the combined impacts of wind, rain, and debris on inter-component connections at spatial and temporal scales. The second objective was to evaluate the performance of a non-intrusive roof-to-wall connection system using fiber reinforced polymer (FRP) materials and compare its load capacity to the capacity of an existing metal fastener under simulated aerodynamic loads. ^ The Wall of Wind (WoW) testing performed using FRP connections on a one-story gable-roof timber structure instrumented with a variety of sensors, was used to create a database on aerodynamic and aero-hydrodynamic loading on roof-to-wall connections tested under several parameters: angles of attack, wind-turbulence content, internal pressure conditions, with and without effects of rain. Based on the aerodynamic loading results obtained from WoW tests, sets of three force components (tri-axial mean loads) were combined into a series of resultant mean forces, which were used to test the FRP and metal connections in the structures laboratory up to failure. A new component testing system and test protocol were developed for testing fasteners under simulated triaxial loading as opposed to uni-axial loading. The tri-axial and uni-axial test results were compared for hurricane clips. Also, comparison was made between tri-axial load capacity of FRP and metal connections. ^ The research findings demonstrate that the FRP connection is a viable option for use in timber roof-to-wall connection system. Findings also confirm that current testing methods of mechanical fasteners tend to overestimate the actual load capacities of a connector. Additionally, the research also contributes to the development a new testing protocol for fasteners using tri-axial simultaneous loads based on the aerodynamic database obtained from the WoW testing. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Damages during extreme wind events highlight the weaknesses of mechanical fasteners at the roof-to-wall connections in residential timber frame buildings. The allowable capacity of the metal fasteners is based on results of unidirectional component testing that do not simulate realistic tri-axial aerodynamic loading effects. The first objective of this research was to simulate hurricane effects and study hurricane-structure interaction at full-scale, facilitating better understanding of the combined impacts of wind, rain, and debris on inter-component connections at spatial and temporal scales. The second objective was to evaluate the performance of a non-intrusive roof-to-wall connection system using fiber reinforced polymer (FRP) materials and compare its load capacity to the capacity of an existing metal fastener under simulated aerodynamic loads. The Wall of Wind (WoW) testing performed using FRP connections on a one-story gable-roof timber structure instrumented with a variety of sensors, was used to create a database on aerodynamic and aero-hydrodynamic loading on roof-to-wall connections tested under several parameters: angles of attack, wind-turbulence content, internal pressure conditions, with and without effects of rain. Based on the aerodynamic loading results obtained from WoW tests, sets of three force components (tri-axial mean loads) were combined into a series of resultant mean forces, which were used to test the FRP and metal connections in the structures laboratory up to failure. A new component testing system and test protocol were developed for testing fasteners under simulated tri-axial loading as opposed to uni-axial loading. The tri-axial and uni-axial test results were compared for hurricane clips. Also, comparison was made between tri-axial load capacity of FRP and metal connections. The research findings demonstrate that the FRP connection is a viable option for use in timber roof-to-wall connection system. Findings also confirm that current testing methods of mechanical fasteners tend to overestimate the actual load capacities of a connector. Additionally, the research also contributes to the development a new testing protocol for fasteners using tri-axial simultaneous loads based on the aerodynamic database obtained from the WoW testing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Offshore wind turbines operate in a complex unsteady flow environment which causes unsteady aerodynamic loads. The unsteady flow environment is characterized by a high degree of uncertainty. In addition, geometry variations and material imperfections also cause uncertainties in the design process. Probabilistic design methods consider these uncertainties in order to reach acceptable reliability and safety levels for offshore wind turbines. Variations of the rotor blade geometry influence the aerodynamic loads which also affect the reliability of other wind turbine components. Therefore, the present paper is dealing with geometric uncertainties of the rotor blades. These can arise from manufacturing tolerances and operational wear of the blades. First, the effect of geometry variations of wind turbine airfoils on the lift and drag coefficients are investigated using a Latin hypercube sampling. Then, the resulting effects on the performance and the blade loads of an offshore wind turbine are analyzed. The variations of the airfoil geometry lead to a significant scatter of the lift and drag coefficients which also affects the damage-equivalent flapwise bending moments. In contrast to that, the effects on the power and the annual energy production are almost negligible with regard to the assumptions made.