14 resultados para Aegiceras-corniculatum
Resumo:
Aconophora compressa (Hemiptera: Membracidae), a biological control agent introduced against the weed Lantana camara (Verbenaceae) in Australia, has since been observed on several non-target plant species, including native mangrove Avicennia marina (Acanthaceae). In this study we evaluated the suitability of two native mangroves, A. marina and Aegiceras corniculatum (Myrsinaceae), for the survival and development of A. compressa through no-choice field cage studies. The longevity of females was significantly higher on L. camara (57.7 ± 3.8 days) than on A. marina (43.3 ± 3.3 days) and A. corniculatum (45.7 ± 3.8 days). The proportion of females laying eggs was highest on L. camara (72%) followed by A. marina (36%) and A. corniculatum (17%). More egg batches per female were laid on L. camara than on A. marina and A. corniculatum. Though more nymphs per shoot emerged on L. camara (29.9 ± 2.8) than on A. marina (13 ± 4.8) and A. corniculatum (10 ± 5.3), the number of nymphs that developed through to adults was not significantly different. The duration of nymphal development was longer on A. marina (67 ± 5.8 days) than on L. camara (48 ± 4 days) and A. corniculatum (43 ± 4.6 days). The results, which are in contrast to those from previous glasshouse and quarantine trials, provide evidence that A. compressa adults can survive, lay eggs and complete nymphal development on the two non-target native mangroves in the field under no-choice condition.
Resumo:
Mangroves are sensitive to the root application of Photosystem II inhibiting herbicides and Avicennia marina is more sensitive than other mangroves tested. Seedlings of four mangrove species, including two salt-excreting species (A. marina and Aegiceras corniculatum) and two salt-excluding species (Rhizophora stylosa and Ceriops australis) were treated with a range of concentrations of the herbicides diuron, ametryn and atrazine. Assessment of responses required the separation of seedlings into two groups: those that had only their roots exposed to the herbicides through the water (A. marina and R. stylosa) and those that had both roots and leaves exposed to herbicides through the water (A. corniculatum and C australis). Salt-excreting species in each group were more susceptible to all herbicide treatments than salt-excluding species, indicating that root physiology was a major factor in the uptake of toxic pollutants in mangroves. Submergence of leaves appeared to facilitate herbicide uptake, having serious implications for seedling recruitment in the field. Each herbicide was ranked by its toxicity to mangrove seedlings from most damaging to least effective, with diuron > ametryn > atrazine. The relative sensitivity of A. marina found in these pot trials was consistent with the observed sensitivity of this species in the field, notably where severe dieback had specifically affected A. marina in the Mackay region, north eastern Australia. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We investigated how species identity and variation in salinity and nutrient availability influence the hydraulic conductivity of mangroves. Using a fertilization study of two species in Florida, we found that stem hydraulic conductivity expressed on a leaf area basis (K-leaf) was significantly different among species of differing salinity tolerance, but was not significantly altered by enrichment with limiting nutrients. Reviewing data from two additional sites (Panama and Belize), we found an overall pattern of declining leaf-specific hydraulic conductivity (K-leaf) with increasing salinity. Over three sites, a general pattern emerges, indicating that native stem hydraulic conductivity (K-h) and K-leaf are less sensitive to nitrogen (N) fertilization when N limits growth, but more sensitive to phosphorus (P) fertilization when P limits growth. Processes leading to growth enhancement with N fertilization are probably associated with changes in allocation to leaf area and photosynthetic processes, whereas water uptake and transport processes could be more limiting when P limits growth. These findings suggest that whereas salinity and species identity place broad bounds on hydraulic conductivity, the effects of nutrient availability modulate hydraulic conductivity and growth in complex ways.
Resumo:
以木榄(Bruguiera gymnorriza)、白骨壤(Avicennia marina)、桐花树(Aegiceras corniculata)、秋茄(Kandelia candel)和海漆(Excoecaria agallocha)为对象,以光合作用对环境因子的响应为主线,建立了从叶片水平到群体冠层水平上的光合产量模型,探讨了从器官、个体到群体的光合产量对环境因子响应的定量关系。 将Farquhar提出的单叶片光合作用生理生化模型与气孔导度B-B模型相结合,建立了光合作用-气孔导度耦合模型。模型模拟结果与实际测量结果具有较好的一致性。在温度为25.0℃,光合有效辐射为1000μmol•m-2s-1 的条件下,当外部CO2浓度倍增到720μmol•mol-1时,白骨壤、木榄、桐花树、秋茄、海漆的光合速率分别提高22.56%,17.13%,18.43%,18.63%和18.41%。在大气CO2浓度和光合有效辐射通量密度不变的条件下,光合作用速率对温度的响应呈单峰型曲线,即有一个最适温度,5种红树植物的最适温度值均为26.5℃左右。大气CO2浓度和温度固定不变(分别为350μmol•mol-1和25.0 ℃)时,光合作用对光合有效辐射的响应符合Michaelis-Menten反应曲线,模型在PAR<1800μmol•m-2s-1时模拟精度较高(P<0.01)。 在典型晴天条件下,5种红树植物的光合速率日变化都出现两个极大值(分别在11时和15时左右),中午前后光合速率较低,模型模拟光合速率日变化与实测数值日变化趋势一致。本模型能较好地模拟5种红树植物光合产量以及对环境因子的响应,模拟预测精度较高(P<0.01)。 以Ross和Nilson叶倾角分布模型为基础,分别建立了直接辐射和散射辐射在冠层内传输的子模型。冠层内的消光系数均有明显的日变化,且上午8时之前和下午16时之后随时间变化较大。在典型晴天条件下,单位土地面积日合成干物质总量(折合为CH2O)白骨壤为15.840g•m-2d-1,对于木榄、桐花树、秋茄、海漆其相应的值分别为 22.254 g•m-2d-1, 23.610 g•m-2d-1,24.525 g•m-2d-1和25.996 g•m-2d-1 。
Resumo:
En este trabajo se estudian seis diferentes táxones pertenecientes al g. Eryngium L.(Umbelliferae). Desde el punto de vista cromosómico, los resultados obtenidos son: E. campestre L. f. duriberum (Sennen et Pau) comb. nova 2n= 14; E. x chevalieri Sennen 2n= 15; E. ilicifolium Lam. 2n=18: E. triquetrum Vahl 2n= 16; E. corniculatum Lam. 2n=16 y E. galioides Lam. var. galioides 2n= 16. Se realiza asimismo un estudio morfológico y nomenclatural de las especies mas críticas y se dan dos lectotypus.
Resumo:
A sedimentological and palynological study of three sediment cores from the northern Mekong River Delta shows the regional sedimentary and environmental development since the mid-Holocene sea level highstand. A sub- to intertidal flat deposit of mid-Holocene age is recorded in the northernmost core. Shoreline deposits in all three cores show descending ages from N to S documenting 1) the early stages of the late Holocene regression and 2) the subsequent delta progradation. The delta plain successions vary from floodplain deposits with swamp-like elements to natural levee sediments. The uppermost sediments in all cores show human disturbance to varying degrees. The most intense alteration is recorded in the northernmost core where the palynological signal together with a charcoal peak indicates the profound change of the environment during the modern land reclamation. The sediments from at least one of the three presented cores do not show a "true" delta facies succession, but rather estuary-like features, as also observed in records from southern Cambodia. This absence is probably due to lack of accommodation space during the initial phase of rapid delta progradation which impeded the development of "true" delta successions as shown in cores from the southern Mekong River Delta.
Resumo:
Three radiocarbon-dated sediment cores from the northeastern Vietnamese Mekong River Delta have been analysed with a multiproxy approach (grain size, pollen and spores, macro-charcoal, carbon content) to unravel the palaeoenvironmental history of the region since the mid Holocene. During the mid-Holocene sea-level highstand a diverse, zoned and widespread mangrove belt (dominated by Rhizophora) covered the extended tidal flats. The subsequent regression and coeval delta progradation led to the rapid development of a back-mangrove community dominated by Ceriops and Bruguiera but also represented locally by e.g. Kandelia, Excoecaria and Phoenix. Along rivers this community seems to have endured even when the adjoining floodplain had already shifted to freshwater vegetation. Generally this freshwater vegetation has a strong swamp signature but locally Arecaceae, Fabaceae, Moraceae/Urticaceae and Myrsinaceae are important and mirror the geomorphological diversity of the delta plain. The macro-charcoal record implies that natural burning of vegetation occurred throughout the records, however, the occurrence of the highest amounts of macro-charcoal particles is linked with modern human activity.