977 resultados para Adzuki Bean
Resumo:
Differential scanning calorimetry was used to evaluate the effect of storage at 10degreesC, 20degreesC and 30degreesC, and 40% and 65% relative humidity (RH) on adzuki bean starch gelatinisation and protein denaturation temperatures. Storage for 6 months at an elevated storage temperature (30degreesC) caused increases in the starch gelatinisation onset temperature (T-o) and gelatinisation peak temperature (T-p) for both Bloodwood and Erimo varieties. Storage at 40% RH resulted in higher T-o and T-p values than storage at 65% RH. The T-o of starch from Bloodwood and Erimo beans stored for up to 1.5 months at 10degreesC and 65% were similar to those of fresh beans. The changes in the salt-soluble protein component were less clear cut than those of the starch. Nonetheless, protein extracted from beans stored at 40% RH exhibited significantly lower T-o and T-p values compared with those stored at 65% RH. This indicates some destabilisation of the protein at the higher RH. These results suggest that detrimental changes occur in starch and, to a lesser extent protein, of adzuki beans stored under unfavourable conditions. On the basis of these results, the best storage conditions to maintain the characteristics of fresh beans are low temperatures (e.g. 10degreesC) and high RH (e.g. 65%). (C) 2003 Swiss Society of Food Science and Technology. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
A digalactosyl ononitol was isolated from seeds of adzuki bean (Vigna angularis [Willd.] Ohwi et Ohasi). Analysis of hydrolysis products and NMR spectroscopy established its structure as O-alpha-D-galactopyranosyl-(1-->6)-O-alpha-D-galactopyranosyl-(1-->3)-O-methyl- D-myo-inositol. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Two varieties of adzuki grown in Australia, Bloodwood and Erimo, were stored for up to 6 months at three temperatures (10, 20 and 30 degreesC), and two relative humidities (RH; 40 and 65%). The amount of cell wall material increased with time under all storage conditions. This increase was greatest at 30 degreesC and 40% RH. Storage time and conditions did not affect the total pectin levels in the cell wall. Erimo constantly exhibited a higher total pectin level than Bloodwood. The Bloodwood soluble pectin, Ca++ and Mg++ and Erimo Ca++ in the cell wall remained stable during storage, while the Erimo soluble pectin and Mg++ exhibited a slight decrease at 20 and 30 degreesC after 3 months of storage. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Stachyose synthase (STS) (EC 2.4.1.67) was purified to homogeneity from mature seeds of adzuki bean (Vigna angularis). Electrophoresis under denaturing conditions revealed a single polypeptide of 90 kD. Size-exclusion chromatography of the purified enzyme yielded two activity peaks with apparent molecular masses of 110 and 283 kD. By isoelectric focusing and chromatofocusing the protein was separated into several active forms with isoelectric point values between pH 4.7 and 5.0. Purified STS catalyzed the transfer of the galactosyl group from galactinol to raffinose and myo-inositol. Additionally, the enzyme catalyzed the galactinol-dependent synthesis of galactosylononitol from d-ononitol. The synthesis of a galactosylcyclitol by STS is a new oberservation. Mutual competitive inhibition was observed when the enzyme was incubated with both substrates (raffinose and ononitol) simultaneously. Galactosylononitol could also substitute for galactinol in the synthesis of stachyose from raffinose. Although galactosylononitol was the less-efficient donor, the Michaelis constant value for raffinose was lower in the presence of galactosylononitol (13.2 mm) compared with that obtained in the presence of galactinol (38.6 mm). Our results indicate that STS catalyzes the biosynthesis of galactosylononitol, but may also mediate a redistribution of galactosyl residues from galactosylononitol to stachyose.
Resumo:
A storage trial of two varieties of adzuki (Vigna angularis), Bloodwood and Erimo, produced in Australia, was conducted to determine the effect of various combinations of temperature, humidity and length of storage on bean quality. The beans were stored for up to 6 mo under the following conditions: temperature (10, 20 and 30degreesC), relative humidity (RH) (40 and 65%). Storage of adzuki at elevated temperature (30degreesC) and low relative humidity (40%) resulted in the greatest loss of bean moisture, increase in hydration times and decrease in bean cooking quality, i.e. increased hardness of cooked beans. The best storage conditions for the preservation of adzuki quality were 10degreesC and 65% RH.
Resumo:
Common bean (Phaseolus vulgaris) is present in the daily diet of various countries and, as for other legumes, has been investigated for its nutraceutical potential. Thus, 16 genotypes from different gene pools, representing seven types of seed coats and different responses to pathogens and pests, were selected to verify their isoflavone contents. The isoflavonoids daidzein and genistein and the flavonols kaempferol, myricetin, and quercetin were found. Grains of the black type showed the highest concentrations of isoflavonoids and were the only ones to exhibit daidzein. IAC Formoso, with high protein content and source of resistance to anthracnose, showed the greatest concentration of genistein, representing around 11% of the content present in soybean, as well as high levels of kaempferol. Arc 1, Raz 55, and IAC Una genotypes showed high content of coumestrol. The results suggest the use of IAC Formoso to increase the nutraceutical characteristics in common bean.
Resumo:
Premise of study: Microsatellite primers were developed for castor bean (Ricinus communis L.) to investigate genetic diversity and population structure, and to provide support to germplasm management. Methods and Results: Eleven microsatellite loci were isolated using an enrichment cloning protocol and used to characterize castor bean germplasm from the collection at the Instituto Agronomico de Campinas (IAC). In a survey of 76 castor bean accessions, the investigated loci displayed polymorphism ranging from two to five alleles. Conclusions: The information derived from microsatellite markers led to significant gains in conserved allelic richness and provides support to the implementation of several molecular breeding strategies for castor bean.
Resumo:
The 30Si silicon isotope stable was used for assessing the accumulation and translocation of Si in rice and bean plants grown in labeled nutritive solution. The isotopic silicon composition in plant materials was determined by mass spectrometry (IRMS) using the method based on SiF4 formation. Considering the total-Si added into nutritive solutions, the quantity absorbed by plants was near to 51% for rice and 15% for bean plants. The accumulated amounts of Si per plant were about 150g in rice and 8.6g in bean. Approximately 70% of the total-Si accumulated was found in leaves. At presented experimental conditions, the results confirmed that once Si is accumulated in the old parts of rice and bean plant tissues it is not redistributed to new parts, even when Si is not supplied to plants from nutritive solution.
Resumo:
Biological nitrogen fixation (BNF) constitutes a valuable source of this nutrient for the common bean Phaseolus vulgaris L and cowpea Vigna unguiculata (L.) Walp., being its avaibility affected by mineral N in the soil solution. The objectives of this work were to evaluate the effects of nitrogen rate, as urea, on symbiotic fixation of N(2) in common bean and cowpea plants, using the isotopic technique, and quantifying the relative contributions of N sources symbiotic N(2) fixation, soil native nitrogen and urea N on the growth of the common bean and cowpea. Non nodulating soybean plants were used as standard. The research was carried out in greenhouse, using pots with 5 kg of soil from a Typic Haplustox (Dystrophic Red Yellow Latosol). The experimental design was completely randomized blocks, with 30 treatments and three replications, arranged in 5x3x2 factorial outline. The treatments consisted of five N rates: 2, 15, 30, 45 and 60 mg N kg(-1) soil; three sampling times: 23, 40 and 76 days after sowing (DAS) and two crops: common bean and cowpea. The BNF decreased with increase N rates, varying from 81.5% to 55.6% for cowpea, and from 71.9% to 55.1% for common bean. The symbiotic N(2) fixation in cowpea can substitute totally the nitrogen fertilization. The nitrogen absorption from soil is not affected by nitrogen fertilizer rate. The N recovery from fertilizer at 76 DAS was of 60.7% by common bean, and 57.1% by cowpea. The symbiotic association in common bean needs the application of a starting dose (40 kg N ha(-1)) for economically acceptable yields.
Resumo:
The heat sensitivity of photochemical processes was evaluated in the common bean (Phaseolus vulgaris) cultivars A222, A320, and Carioca grown under well-watered conditions during the entire plant cycle (control treatment) or subjected to a temporal moderate water deficit at the preflowering stage (PWD). The responses of chlorophyll fluorescence to temperature were evaluated in leaf discs excised from control and PWD plants seven days after the complete recovery of plant shoot hydration. Heat treatment was done in the dark (5 min) at the ambient CO2 concentration. Chlorophyll fluorescence was assessed under both dark and light conditions at 25, 35, and 45 degrees C. In the dark, a decline of the potential quantum efficiency of photosystem II (PSII) and an increase in minimum chlorophyll fluorescence were observed in all genotypes at 45 degrees C, but these responses were affected by PWD. In the light, the apparent electron transport rate and the effective quantum efficiency of PSII were reduced by heat stress (45 degrees C), but no change due to PWD was demonstrated. Interestingly, only the A222 cultivar subjected to PWD showed a significant increase in nonphotochemical fluorescence quenching at 45 degrees C. The common bean cultivars had different photochemical sensitivities to heat stress altered by a previous water deficit period. Increased thermal tolerance due to PWD was genotype-dependent and associated with an increase in potential quantum efficiency of PSII at high temperature. Under such conditions, the genotype responsive to PWD treatment enhanced its protective capacity against excessive light energy via increased nonphotochemical quenching.
Resumo:
Nowadays, the rising competition for the use of water and environmental resources with consequent restrictions for farmers should change the paradigm in terms of irrigation concepts, or rather, in order to attain economical efficiency other than to supply water requirement for the crop. Therefore, taking into account the social and economical role of bean activity in Brazil, as well as the risk inherent to crop due to its high sensibility to both deficit and excessive water, the optimization methods regarding to irrigation management have become more interesting and essential. This study intends to present a way to determine the optimal water supply, considering different combinations between desired bean yield and level of risk, bringing as a result a graph with the former associated with the latter, depending on different water depths.
Resumo:
Microsatellites and gene-derived markers are still underrepresented in the core molecular linkage map of common bean compared to other types of markers. In order to increase the density of the core map, a set of new markers were developed and mapped onto the RIL population derived from the `BAT93` x `Jalo EEP558` cross. The EST-SSR markers were first characterized using a set of 24 bean inbred lines. On average, the polymorphism information content was 0.40 and the mean number of alleles per locus was 2.7. In addition, AFLP and RGA markers based on the NBS-profiling method were developed and a subset of the mapped RGA was sequenced. With the integration of 282 new markers into the common bean core map, we were able to place markers with putative known function in some existing gaps including regions with QTL for resistance to anthracnose and rust. The distribution of the markers over 11 linkage groups is discussed and a newer version of the common bean core linkage map is proposed.