988 resultados para Adsorption. Impregnation. Metals. Retorted shale


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concern with the environment has lead to an increase in the research for new adsorption techniques, low cost adsorvent materials and with high availability. Many works search the development of higher selectivity modified adsorvents. The Brazil has the second world reserve of oiled shale, because of it, the use of that reject is of great interest. This study has the goal of characterize and analyze the retorted shale, reject of the pirobetuminous shale pyrolysis, and the retorted shale modified through the humid impregnation method, wich the precursors were the metals nitrates ( Cobalt, Nickel and Copper), to the usage has adsorvent materials. The samples were characterized chemically, textually and structurally by the X ray fluorescence (XRF), BET, X ray diffraction (XRD) and scanning electronic microscopy (SEM) techniques. The impregnated samples showed a reduction in the superficial area and in the pore volume when compared with the retorted shale. Besides that, diffractions referred to the impregnated metals where observed in the XRD analysis, wich were the same metals detected in the XRF and SEM analysis. The materials showed homogeneity in it s composition. The results shows that the materials presents adequate adsorption characteristics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concern with the environment has lead to an increase in the research for new adsorption techniques, low cost adsorvent materials and with high availability. Many works search the development of higher selectivity modified adsorvents. The Brazil has the second world reserve of oiled shale, because of it, the use of that reject is of great interest. This study has the goal of characterize and analyze the retorted shale, reject of the pirobetuminous shale pyrolysis, and the retorted shale modified through the humid impregnation method, wich the precursors were the metals nitrates ( Cobalt, Nickel and Copper), to the usage has adsorvent materials. The samples were characterized chemically, textually and structurally by the X ray fluorescence (XRF), BET, X ray diffraction (XRD) and scanning electronic microscopy (SEM) techniques. The impregnated samples showed a reduction in the superficial area and in the pore volume when compared with the retorted shale. Besides that, diffractions referred to the impregnated metals where observed in the XRD analysis, wich were the same metals detected in the XRF and SEM analysis. The materials showed homogeneity in it s composition. The results shows that the materials presents adequate adsorption characteristics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several types of alumina were synthesized from sodium aluminate (NaAlO2) by precipitation with sulfuric acid (H2SO4) and subsequently calcination at 500 degrees C to obtain gamma-Al2O3. The precursor aluminate was derived from aluminum scrap. The various gamma-Al2O3 synthesized were characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), adsorption-desorption of N-2 (S-BET) and scanning electron microscopy (SEM). XRD revealed that distinct phases of Al2O3 were formed during thermal treatment. Moreover, it was observed that conditions of synthesis (pH, aging time and temperature) strongly affect the physicochemical properties of the alumina. A high-surface-area alumina (371 m(2) g(-1)) was synthesized under mild conditions, from inexpensive raw materials. These aluminas were tested for the adsorption of Cd(II), Zn(II) and Pb(II) from aqueous solution at toxic metal concentrations, and isotherms were determined. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Slab and cluster model spin-polarized calculations have been carried out to study various properties of isolated first-row transition metal atoms adsorbed on the anionic sites of the regular MgO(100) surface. The calculated adsorption energies follow the trend of the metal cohesive energies, indicating that the changes in the metal-support and metal-metal interactions along the series are dominated by atomic properties. In all cases, except for Ni at the generalized gradient approximation level, the number of unpaired electron is maintained as in the isolated metal atom. The energy required to change the atomic state from high to low spin has been computed using the PW91 and B3LYP density-functional-theory-based methods. PW91 fails to predict the proper ground state of V and Ni, but the results for the isolated and adsorbed atom are consistent within the method. B3LYP properly predicts the ground state of all first-row transition atom the high- to low-spin transition considered is comparable to experiment. In all cases, the interaction with the surface results in a reduced high- to low-spin transition energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Partition of heavy metals between particulate and dissolve fraction of stormwater primarily depends on the adsorption characteristics of solids particles. Moreover, the bioavailability of heavy metals is also influenced by the adsorption behaviour of solids. However, due to the lack of fundamental knowledge in relation to the heavy metals adsorption processes of road deposited solids, the effectiveness of stormwater management strategies can be limited. The research study focused on the investigation of the physical and chemical parameters of solids on urban road surfaces and, more specifically, on heavy metal adsorption to solids. Due to the complex nature of heavy metal interaction with solids, a substantial database was generated through a series of field investigations and laboratory experiments. The study sites for the build-up pollutant sample collection were selected from four urbanised suburbs located in a major river catchment. Sixteen road sites were selected from these suburbs and represented typical industrial, commercial and residential land uses. Build-up pollutants were collected using a wet and dry vacuum collection technique which was specially designed to improve fine particle collection. Roadside soil samples were also collected from each suburb for comparison with the road surface solids. The collected build-up solids samples were separated into four particle size ranges and tested for a range of physical and chemical parameters. The solids build-up on road surfaces contained a high fraction (70%) of particles smaller than 150ìm, which are favourable for heavy metal adsorption. These solids particles predominantly consist of soil derived minerals which included quartz, albite, microcline, muscovite and chlorite. Additionally, a high percentage of amorphous content was also identified in road deposited solids. In comparing the mineralogical data of surrounding soil and road deposited solids, it was found that about 30% of the solids consisted of particles generated from traffic related activities on road surfaces. Significant difference in mineralogical composition was noted in different particle sizes of build-up solids. Fine solids particles (<150ìm) consisted of a clayey matrix and high amorphous content (in the region of 40%) while coarse particles (>150ìm) consisted of a sandy matrix at all study sites, with about 60% quartz content. Due to these differences in mineralogical components, particles larger than and smaller than 150ìm had significant differences in their specific surface area (SSA) and effective cation exchange capacity (ECEC). These parameters, in turn, exert a significant influence on heavy metal adsorption. Consequently, heavy metal content in >150ìm particles was lower than in the case of fine particles. The particle size range <75ìm had the highest heavy metal content, corresponding with its high clay forming minerals, high organic matter and low quartz content which increased the SSA, ECEC and the presence of Fe, Al and Mn oxides. The clay forming minerals, high organic matter and Fe, Al and Mn oxides create distinct groups of charge sites on solids surfaces and exhibit different adsorption mechanisms and bond strength, between heavy metal elements and charge sites. Therefore, the predominance of these factors in different particle sizes leads to different heavy metal adsorption characteristics. Heavy metals show preference for association with clay forming minerals in fine solids particles, whilst in coarse particles heavy metals preferentially associate with organic matter. Although heavy metal adsorption to amorphous material is very low, the heavy metals embedded in traffic related materials have a potential impact on stormwater quality.Adsorption of heavy metals is not confined to an individual type of charge site in solids, whereas specific heavy metal elements show preference for adsorption to several different types of charge sites in solids. This is attributed to the dearth of preferred binding sites and the inability to reach the preferred binding sites due to competition between different heavy metal species. This confirms that heavy metal adsorption is significantly influenced by the physical and chemical parameters of solids that lead to a heterogeneity of surface charge sites. The research study highlighted the importance of removal of solids particles from stormwater runoff before they enter into receiving waters to reduce the potential risk posed by the bioavailability of heavy metals. The bioavailability of heavy metals not only results from the easily mobile fraction bound to the solids particles, but can also occur as a result of the dissolution of other forms of bonds by chemical changes in stormwater or microbial activity. Due to the diversity in the composition of the different particle sizes of solids and the characteristics and amount of charge sites on the particle surfaces, investigations using bulk solids are not adequate to gain an understanding of the heavy metal adsorption processes of solids particles. Therefore, the investigation of different particle size ranges is recommended for enhancing stormwater quality management practices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Produced water is the main effluent linked to the activity of extraction of oil and their caring management is necessary due to the large volume involved, to ensure to minimize the negative impacts of discharges of these waters in the environment. This study aimed to analyze the use of retorted shale, which is a reject from the pyrolysis of pirobituminous shale, as adsorbent for the removal of phenols in produced water. The material was characterized by different techniques (grain sized analysis, thermal analysis, BET, FRX, FT-IR, XRD and SEM), showing the heterogeneity in their composition, showing its potential for the removal of varied compounds, as well as the phenols and their derivatives. For the analysis of the efficiency of the oil shale for the adsorption process, assays of adsorption balance were carried through, and also kinetic studies and dynamics adsorption, in the ETE of the UTPF of Petrobras, in Guamaré-RN. The balance assays shown a bigger conformity with the model of Langmuir and the kinetic model more adjusted to describe the adsorption of phenols in retorted shale was of pseudo-second order. The retorted shale presented a low capacity of adsorption of phenols (1,3mg/g), when related to others conventional adsorbents, however it is enough to the removal of these composites in concentrations presented in the produced water of the UTPF of Guamaré. The assays of dynamics adsorption in field had shown that the concentration of phenol in the effluent was null until reaching its rupture (58 hours). The results showed the possibility of use of the reject for removal of phenols in the final operations of the treatment process, removing as well, satisfactorily, the color and turbidity of the produced water, with more than 90% of removal

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this research was the preparation of a silsesquioxane functionalized with eight chloropropyl chains (T8-PrCl) and of a new derivative functionalized with a pendant linear chain (2-amino-1,3,4-thiadiazole - ATD; T8-Pr-ATD). The two nanostructured materials were characterized by 13C and 29Si NMR, FTIR and elemental analysis. The new nanostructured material, octakis[3-(2-amino-1,3,4-thiadiazole)propyl] octasilsesquioxane (T8-Pr-ATD), was tested as a ligand for transition-metal ions with a special attention to adsorption isotherms. The adsorption was performed using a batchwise process and the organofunctionalized surface showed the ability to adsorb the metal ions Cu (II), Co (II), and Ni (II) from water and ethanol. The adsorption isotherms were fitted by Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) model. The kinetics of adsorption of metals were performed using three models such as pseudo-first order, pseudo-second order and Elovich. The Langmuir and Elovich models were the most appropriate to describe the adsorption and kinetic data, respectively. Furthermore, the T8-Pr-ATD was successfully applied to the analysis of environmental samples (river and sea water). Subsequently, a new nanomaterial was prepared by functionalization of the T8-Pr-ATD with a Mo (II) organometallic complex (T8-Pr-ATD-Mo). Only a few works in the literature have reported this type of substitution, and none dealt with ATD and Mo (II) complexes. The new Mo-silsesquioxane organometallic nanomaterial was tested as precursor in the epoxidation of cyclooctene and styrene. © 2012 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this research was the preparation of a silica gel functionalized successively with 3-chloropropyltrimethoxysilane (SG-PrCl) and thiourea (SG-Pr-THIO), and its application in adsorption and catalysis. The materials were characterized by 13C and 29Si NMR, FTIR, scanning electron micrographs (SEM), analysis of nitrogen and elemental analysis. Aiming at its application in adsorption, the [3-(thiourea)-propyl] silica gel (SG-Pr-THIO) was tested as an adsorbent for transition-metal ions using a batchwise process. The organofunctionalized surface showed the ability to adsorb the metal ions Cd(ii), Cu(ii), Ni(ii), Pb(ii) and Co(ii) from water, ethanol and acetone. The adsorption isotherms were fitted by Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) models. The kinetics of adsorption of metals were performed using three models such as pseudo-first order, pseudo-second order and Elovich. The Langmuir and pseudo-first order models were the most appropriate to describe the adsorption and kinetic data, respectively. With the purpose of application in catalysis, the SG-Pr-THIO was reacted with a Mo(ii) organometallic complex, forming the new material SG-Pr-THIO-Mo. Only a few works in the literature have reported this type of reaction, and none dealt with thiourea and Mo(ii) complexes. The new Mo-silica gel organometallic material was tested as catalyst in the epoxidation of cyclooctene and styrene. © 2013 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adsorption and regeneration of ion exchange resins were studied using a subcritical solution of a CO2-H2O mixture and a fixed bed column. The commercial Amberlite IRC-50/IRC-86 cation exchange resins and Amberlite IRA-67 anion exchange resin were tested for heavy metals (Pb, Cu, Cd) adsorption from a solution with different initial metal concentrations at different temperatures. After adsorption, the loaded resins were regenerated with water and carbon dioxide at different temperatures and a pressure of 25 MPa. The efficiency of the IRC-50 resin was lower than that of the IRC-86 resin for the adsorption of metals like Cd, Cu and Pb. Results obtained for desorption of these metals indicated that the process could be used for Cd and in principle for Cu. Sorption of metal ions depended strongly on feed concentration. Mathematical modeling of the metal desorption process was carried out successfully as an extraction process. For this purpose, the VTII Model, which is applied to extraction from solids using supercritical solvents, was used in this work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Produced water is the main effluent linked to the activity of extraction of oil and their caring management is necessary due to the large volume involved, to ensure to minimize the negative impacts of discharges of these waters in the environment. This study aimed to analyze the use of retorted shale, which is a reject from the pyrolysis of pirobituminous shale, as adsorbent for the removal of phenols in produced water. The material was characterized by different techniques (grain sized analysis, thermal analysis, BET, FRX, FT-IR, XRD and SEM), showing the heterogeneity in their composition, showing its potential for the removal of varied compounds, as well as the phenols and their derivatives. For the analysis of the efficiency of the oil shale for the adsorption process, assays of adsorption balance were carried through, and also kinetic studies and dynamics adsorption, in the ETE of the UTPF of Petrobras, in Guamaré-RN. The balance assays shown a bigger conformity with the model of Langmuir and the kinetic model more adjusted to describe the adsorption of phenols in retorted shale was of pseudo-second order. The retorted shale presented a low capacity of adsorption of phenols (1,3mg/g), when related to others conventional adsorbents, however it is enough to the removal of these composites in concentrations presented in the produced water of the UTPF of Guamaré. The assays of dynamics adsorption in field had shown that the concentration of phenol in the effluent was null until reaching its rupture (58 hours). The results showed the possibility of use of the reject for removal of phenols in the final operations of the treatment process, removing as well, satisfactorily, the color and turbidity of the produced water, with more than 90% of removal

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta Dissertação teve como objetivo,a síntese de hidrogéis à base de alginato e nanopartículas magnéticas (maghemita) preparadas in situ. Os hidrogéis foram preparados em diferentes concentrações de alginato de sódio (2 e 3% m/v), FeSO4 (0,3 e 0,5 mol L-1) e CaCl2 (0,1 e 0,3 mol L-1). As propriedades físico-químicas dos hidrogéis foram analisadas e, posteriormente, foram avaliados quanto à capacidade de remoção de íons Ni2+ e Mn2+ de soluções aquosas. Para caracterização das amostras foram utilizadas diversas técnicas de análises, tais como, análise granulométrica, microscopia óptica (OM), microscopia eletrônica de varredura (SEM), microscopia eletrônica de transmissão (TEM), magnetometria de amostra vibrante (VSM), espectroscopia na região do infravermelho por transformada de Fourier (FTIR), difratometria de raios-X (XRD), espectroscopia Mössbauer, e análise termogravimétrica (TGA). Foram preparados hidrogéis com morfologia predominantemente esférica e dimensões micrométricas (500 a 850 m), com átomos de Fe e Ca dispersos uniformemente em sua estrutura. Os hidrogéis apresentaram boa resistência térmica e comportamento superparamagnético. As amostras foram intumescidas em água deionizada durante um intervalo de tempo a fim de avaliar o grau de intumescimento (Q) para determinar a amostra com a melhor resposta para posterior aplicação em solução aquosa contendo íons metálicos (Ni2+ e Mn2+). Os resultados revelaram que a amostra cuja concentração de 3% m/v de alginato de sódio, 0,3 mol L-1 de FeSO4 e 0,3 mol L-1 de CaCl2 obteve maior Q (50%). Em consequência deste resultado, optou-se por utilizar estaamostra, na remoção de metais pesados presentes em soluções aquosas e em efluentes industriais. Vários parâmetros,tais como: tempo de contato,pH, concentração inicial do íon e massa de hidrogel foram estudados.Os resultados, para efluente sintético, revelaram que o tempo de equilíbrio foi de 60 minutos; a capacidade de remoção dos metais melhora com o aumento de pH (3 a 9), sendo máxima em pH 7;quanto menor a concentração inicial da solução iônica (50 a 500 mg L-1), maior a capacidade de remoção, 52% de Ni2+ e 49% de Mn2+ (concentração inicial de 50 mg L-1). No efluente industrial, a remoção foi de 61% de Ni2+ e 57% de Mn2+(300 mg de hidrogel). Os resultados encontrados revelaram que os hidrogéis magnéticos produzidos à base de alginato têm potencial uso no tratamento de efluentes industriais contaminados com metais pesados

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado, Qualidade em Análises, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dins dels processos de recuperació de metalls de dissolucions diluïdes s'ha realitzat un estudi del procés d'extracció d'or i de zinc mitjançant resines amberlite XAD-2 impregnades amb sulfur de triisobutil fosfina (TIBPS) i àcid di-(2-etilhexil) fosfòric (DEHPA) respectivament. S'ha realitzat un estudi de l'equilibri de l'adsorció d'espècies metàl·liques d'aquests metalls amb les resines indicades anteriorment. Amb la metodologia emprada per a la determinació dels punts d'equilibri dels experiments en batch i en columna, s'ha vist que una única isoterma no podia descriure el fenomen global d'equilibri i que en funció de la metodologia emprada s'obtenien isotermes diferents. Es va introduir una nova variable per poder explicar el fenomen observat, i per tant, amb aquesta nova variable l'equació de la isoterma es converteix amb l'equació d'una supèrfície que s'ha definit com a Superfície d'Equilibri. S'han determinat les equacions de les Suprfícies d'Equilibri dels sistemes d'adsorció estudiats (Au(III) TIBPS/XAD-2 i Zn(II) DEHPA/XAD-2) observan una bona coincidència de tots els punts d'equilibri obtinguts sobre la superfície, així com, un bon ajust de totes les isotermes obtingudes en funció de les diferents metodologies emprades sobre les respectives superfícies d'equilibri. Aquest nou concepte generalitza el concepte d'isoterma d'un procés d'adsorció. Fimalment, s'ha plantejat un model matemàtic d'adsorció per a determinar el coeficient efectiu de difusió (De) i el coeficient de transferància de matèria (kf) per ambdós sistemes d'adsorció estudiats mitjançant l'aplicació del model de difusió de sòlid homogeni (HSDM), utilitzant com a condició de contorn en el model la isoterma de Langmuir obtinguda mitjançant els experiments en columna de llit fix i emprant també l'equació obtinguda mitjançant el nou concepte de Superfície d'Equilibri. Els resultats obtinguts són molt satisfactoris, per tant, es pot concloure que la Superfície d'Equilibri és una bona eina per a descriure l'equilibri en els processos d'adsorció d'or i zinc amb les resines amberlite XAD-2 impregnades amb TIBPS i DEHPA respectivament.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the organosilanes aminopropyltriethoxysilane, 3-mercaptopropyltryethoxisilane and n[-3-(trimetoxisilyl)propyl]ethylenetriamine, as well as tetraethylortosilicate (TEOS), were employed to produce, by sol-gel method, organofuncionalized silicon samples. The prepared samples were characterized by elementar analys by thermogravimetry and infrared spectroscopy. Those samples were employed to adsorb Cd2+, Pb2+, Ni2+ and Zn2+ from aqueous solutions (10, 20, 40, 60 and 80 mg L-1). In typical experiments, 50 mg of the organometrix was suspended in 20 mL of metal cation solutions at four different contact times: 30, 60, 90 and 120 minutes. The total amount of adsorbed cations were measured by atomic absorption spectrometry. To all investigated matrices, the following adsorption capacity was observed: Ni2+ > Zn2+ > Cd2+ > Pb2+. Such sequence is closely related with the cation radius, as well as the cation hardness

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)