984 resultados para Adsorption model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasingly popular disrupted Langmuir–adsorption (DLA) kinetic model of photocatalysis does not contain an explicit function for the dependence of rate on the irradiance, ρ, but instead has a term αρθ, where, α is a constant of the system, and θ is also a constant equal to 1 or 0.5 at low or high ρ values, respectively. Several groups have recently replaced the latter term with an explicit function of the form χ1(−1 + (1 + χ2ρ)1/2), where χ1 and χ2, are constants that can be related to a proposed reaction scheme. Here the latter schemes are investigated, and revised to create a more credible form by assuming an additional hole trapping step. The latter may be the oxidation of water or a surface saturated with O2–. Importantly, this revision suggests that it is only applicable for low quantum yield/efficiency processes. The revised disrupted Langmuir–adsorption model is used to provide good fits to the kinetic data reported for a number of different systems including the photocatalytic oxidation of nitric oxide (NO), phenol (PhOH), and formic acid (FA).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The nucleataon growth model of electrochemical phase formation is analysed for the hnear potential sweep input Apart from deducing diagnostic criteria and method~ of estimating model parameters, the predictions of the nucleation growth model are compared and contrasted with those of a sample adsorption model A dastlnCtlOn is made possible between adsorption and phase transition, which seems useful for understanding the nature of ECPF phenomena, especially underpotentlal deposition (UPD).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Arsenic pollution of water is a major problem faced worldwide. Arsenic is a suspected carcinogen in human beings and is harmful to other living beings. In the present study, a novel adsorbent was used to remove arsenate [As(V)] from synthetic solutions. The adsorbent, which is a mixture of rare earth oxides, was found to adsorb As(V) rapidly and effectively. The effect of various parameters such as contact time, initial concentration, pH, and adsorbent dose on adsorption efficiency was investigated. More than 90% of the adsorption occurred within the first 10 min and the kinetic rate constant was found to be about 3.5 mg min(-1). Adsorption efficiency was found to be dependent on the initial As(V) concentration, and the adsorption behavior followed the Langmuir adsorption model. The optimum pH was found to be 6.5. The presence of other ions such as nitrate, phosphate, sulphate, and silicate decreased the adsorption of As(V) by about 20-30%. The adsorbed As(V) could be desorbed easily by washing the adsorbent with pH 12 solution. This study demonstrates the applicability of naturally occurring rare earth oxides as selective adsorbents for As(V) from solutions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The adsorption behavior of methanol, ethanol, n-butanol, n-hexanol and n-octanol on mica surface was investigated by atomic force microscopy. All these alcohols have formed homogeneous films with different characteristics. Upright standing bilayer structure was formed on methanol adsorbed mica surface. For ethanol, bilayer structure and monolayer one were simultaneously formed, while for n-butanol and n-hexanol, rough films were observed. What was formed for n-octanol? Close-packed flat film was observed on n-octanol adsorbed mica substrate, the film was assumed to be a tilted monolayer. The possible adsorption model for each alcohol molecule was proposed according to its adsorption behavior.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Heteropoly acids (HPAs), such as dodecatungstosilicic acid (SiW12), adsorb strongly on to activated carbons. The surface chemical properties of the activated carbons have a pronounced effect on the adsorption of HPAs. To obtain activated carbons with the desired surface chemical properties, modification with mineral acids has been applied. The adsorption isotherms of SiW12 from aqueous solution and various acidic media on to the various carbons have been studied. On the basis of the results obtained, an adsorption model for HPAs from acidic media is presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

For the design of affinity membranes, protein adsorption in membrane affinity chromatography (MAC) was studied by frontal analysis. According to fast mass transfer, small thickness of affinity membranes and high affinity between the protein and the ligand, an ideal adsorption (IA) model was proposed for MAC and was used together with equilibrium-dispersive (E-D) model to describe the adsorption of bovine serum albumin (BSA) onto cellulose diacetate/polyethyleneimine (CA/PEI) blend membranes with and without Cu2+ chelating. E-D model was found to better describe the initial region of experimental breakthrough curves. The influence of axial dispersion was revealed and it showed the importance of design of the module to homogenously distribute feed solution. IA model was found to be better for the whole experimental breakthrough curve. According to it, the capacity of affinity membranes and the specificity of the interaction are of equal importance for the design of affinity membranes. An optimum feed concentration was also found in the operation of MAC. The discrepancy between experimental optimum feed concentrations and predicted ones from IA model may be due to the ignorance of some experimental effects such as axial dispersion.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This article describes an approach for quantifying microsphere deposition onto iron-oxide-coated sand under the influence of adsorbed Suwannee River Humic Acid (SRHA). The experimental technique involved a triple pulse injection of model latex microspheres (microspheres) in pulses of (1) microspheres, followed by (2) SRHA, and then (3) microspheres, into a column filled with iron-coated quartz sand as a water-saturated porous medium. A random sequential adsorption model (RSA) simulated the gradual rise in the first (microsphere) breakthrough curve (BTC). Using the same model calibration parameters a dramatic increase in concentration at the start of the second particle BTC, generated after SRHA injection, could be simulated by matching microsphere concentrations to extrapolated RSA output. RSA results and microsphere/SRHA recoveries showed that 1 mg of SRHA could block 5.90 plus or minus 0.14 x 10^9 microsphere deposition sites. This figure was consistent between experiments injecting different SRHA masses, despite contrasting microsphere deposition/release regimes generating the second microsphere BTC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work evaluated kinetic and adsorption physicochemical models for the biosorption process of lanthanum, neodymium, europium, and gadolinium by Sargassum sp. in batch systems. The results showed: (a) the pseudo-second order kinetic model was the best approximation for the experimental data with the metal adsorption initial velocity parameter in 0.042-0.055 mmol.g -1.min-1 (La < Nd < Gd < Eu); (b) the Langmuir adsorption model presented adequate correlation with maximum metal uptake at 0.60-0.70 mmol g-1 (Eu < La < Gd < Nd) and the metal-biomass affinity parameter showed distinct values (Gd < Nd < Eu < La: 183.1, 192.5, 678.3, and 837.3 L g-1, respectively); and (c) preliminarily, the kinetics and adsorption evaluation did not reveal a well-defined metal selectivity behavior for the RE biosorption in Sargassum sp., but they indicate a possible partition among RE studied. © (2009) Trans Tech Publications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is well known that gases adsorb on many surfaces, in particular metal surfaces. There are two main forms responsible for these effects (i) physisorption and (ii) chemisorption. Physisorption is associated with lower binding energies in the order of 1–10 kJ mol−¹, compared to chemisorption which ranges from 100 to 1000 kJ mol−¹. Furthermore, chemisorption only forms monolayers, contrasting physisorption that can form multilayer adsorption. The reverse process is called desorption and follows similar mathematical laws; however, it can be influenced by hysteresis effects. In the present experiment, we investigated the adsorption/desorption phenomena on three steel and three aluminium cylinders containing compressed air in our laboratory and under controlled conditions in a climate chamber, respectively. Our observations from completely decanting one steel and two aluminium cylinders are in agreement with the pressure dependence of physisorption for CO₂, CH₄, and H₂O. The CO₂ results for both cylinder types are in excellent agreement with the pressure dependence of a monolayer adsorption model. However, mole fraction changes due to adsorption on aluminium (< 0.05 and 0 ppm for CO₂ and H₂O) were significantly lower than on steel (< 0.41 ppm and about < 2.5 ppm, respectively). The CO₂ amount adsorbed (5.8 × 1019 CO₂ molecules) corresponds to about the fivefold monolayer adsorption, indicating that the effective surface exposed for adsorption is significantly larger than the geometric surface area. Adsorption/desorption effects were minimal for CH₄ and for CO but require further attention since they were only studied on one aluminium cylinder with a very low mole fraction. In the climate chamber, the cylinders were exposed to temperatures between −10 and +50 °C to determine the corresponding temperature coefficients of adsorption. Again, we found distinctly different values for CO₂, ranging from 0.0014 to 0.0184 ppm °C−¹ for steel cylinders and −0.0002 to −0.0003 ppm °C−¹ for aluminium cylinders. The reversed temperature dependence for aluminium cylinders points to significantly lower desorption energies than for steel cylinders and due to the small values, they might at least partly be influenced by temperature, permeation from/to sealing materials, and gas-consumption-induced pressure changes. Temperature coefficients for CH₄, CO, and H₂O adsorption were, within their error bands, insignificant. These results do indicate the need for careful selection and usage of gas cylinders for high-precision calibration purposes such as requested in trace gas applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanoparticle deposition behavior observed at the Darcy scale represents an average of the processes occurring at the pore scale. Hence, the effect of various pore-scale parameters on nanoparticle deposition can be understood by studying nanoparticle transport at pore scale and upscaling the results to the Darcy scale. In this work, correlation equations for the deposition rate coefficients of nanoparticles in a cylindrical pore are developed as a function of nine pore-scale parameters: the pore radius, nanoparticle radius, mean flow velocity, solution ionic strength, viscosity, temperature, solution dielectric constant, and nanoparticle and collector surface potentials. Based on dominant processes, the pore space is divided into three different regions, namely, bulk, diffusion, and potential regions. Advection-diffusion equations for nanoparticle transport are prescribed for the bulk and diffusion regions, while the interaction between the diffusion and potential regions is included as a boundary condition. This interaction is modeled as a first-order reversible kinetic adsorption. The expressions for the mass transfer rate coefficients between the diffusion and the potential regions are derived in terms of the interaction energy profile. Among other effects, we account for nanoparticle-collector interaction forces on nanoparticle deposition. The resulting equations are solved numerically for a range of values of pore-scale parameters. The nanoparticle concentration profile obtained for the cylindrical pore is averaged over a moving averaging volume within the pore in order to get the 1-D concentration field. The latter is fitted to the 1-D advection-dispersion equation with an equilibrium or kinetic adsorption model to determine the values of the average deposition rate coefficients. In this study, pore-scale simulations are performed for three values of Peclet number, Pe = 0.05, 5, and 50. We find that under unfavorable conditions, the nanoparticle deposition at pore scale is best described by an equilibrium model at low Peclet numbers (Pe = 0.05) and by a kinetic model at high Peclet numbers (Pe = 50). But, at an intermediate Pe (e.g., near Pe = 5), both equilibrium and kinetic models fit the 1-D concentration field. Correlation equations for the pore-averaged nanoparticle deposition rate coefficients under unfavorable conditions are derived by performing a multiple-linear regression analysis between the estimated deposition rate coefficients for a single pore and various pore-scale parameters. The correlation equations, which follow a power law relation with nine pore-scale parameters, are found to be consistent with the column-scale and pore-scale experimental results, and qualitatively agree with the colloid filtration theory. These equations can be incorporated into pore network models to study the effect of pore-scale parameters on nanoparticle deposition at larger length scales such as Darcy scale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Os elementos de terras raras, representados em sua maioria pelos lantanídeos, ocorrem principalmente como constituintes-traço da maioria dos minerais de rochas comuns (monazita, apatita) e também estão presentes em alguns minérios. Tais elementos foram largamente usados por décadas como fertilizantes na China. Na área das inovações tecnológicas, a demanda por esses metais vem crescendo por conta das suas aplicações em diversos campos. Consequentemente, grandes quantidades desses elementos são acumulados em ambientes aquáticos atingindo o fitoplâncton. Assim, as microalgas que são organismos ecologicamente importantes na cadeia alimentar têm sido frequentemente usadas em estudos ambientais para avaliar a toxicidade relativa de várias descargas químicas e são largamente estudadas na detecção dos primeiros impactos no ecossistema. Somado a isso, são biomassas que possuem boa capacidade de biossorção de metais devido à presença de ligantes na sua estrutura que promovem a captação deles quando em solução. Dessa forma, as interações entre as microalgas verdes Monoraphidium e Scenedesmus e os íons La3+ e Ce3+ foram investigadas neste trabalho. Para isso, foram avaliados o efeito tóxico e a bioacumulação do La3+ pelas duas microalgas verdes. Adicionalmente, estudos em batelada da biossorção do La3+ e Ce3+ em soluções contendo os elementos isoladamente ou em combinação foram realizados. No estudo de toxicidade e de bioacumulação o meio de cultivo utilizado foi o ASM-1, com e sem presença de La3+ (10 mg.L-1 a 100 mg.L-1), onde o efeito tóxico do metal foi monitorado por análises micro e macroscópica das células e também pela quantificação do crescimento celular baseada em medidas da massa seca. A bioacumulação do metal foi avaliada da mesma forma para ambas as microalgas. Os resultados obtidos mostraram que o efeito tóxico do metal foi presente em concentrações iônicas de 50 e 100 mg.L-1 e que houve uma bioconcentração do La3+ em ambas espécies de microalgas, principalmente quando a concentração inicial do La3+ foi de 10 e 25 mg.L-1, mostrando que houve uma relação direta entre a bioconcentração e a toxicidade do La3+. O gênero Monoraphidium bioconcentrou mais metal que o gênero Scenedesmus. Os resultados da biossorção dos metais em solução monoelementar mostraram que as microalgas apresentaram grande capacidade de captação do La3+ (20,7 mmol.g-1 para Monoraphidium sp. e 17,8 mmol.g-1 para Scenedesmus sp.) e do Ce3+ (25,7 mmol.g-1 para Monoraphidium sp. e 11,5 mmol.g-1 para Scenedesmus sp.). Os resultados obtidos revelaram que os dados melhor se ajustaram ao modelo de Freundlich, na maioria dos casos. Em sistema binário, notou-se que houve uma menor captação de cada um individualmente, evidenciando uma competição entre eles pelos mesmos sítios ligantes e que ambas apresentaram maior afinidade pelo Ce3+

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the paper the kinetic effects of La3+ and Ce4+ on the growth of Microcystis and the accumulation kinetics of Microcystis in the single and combined systems of La3+ and Ce4+ were studied. The mechanism of the effects of La3+ and Ce4+ on the growth of Microcystis and their accumulation kinetics were also discussed. In the single system, La3+ stimulated the growth of Microcystis at initial concentrations below 2 mg / 1, but inhibited it above 2 mg / 1. Ce4+ accelerated the growth of Microcystis at initial concentrations below 0.2 mg / 1 and inhibited at above 0.2 mg /l. Furthermore, the stimulation weakened with the increase of initial concentrations of La3+ and Ce4+. In the combined system, the growth of Microcystis was accelerated in the over all cases. In the single system, the amount of La3+ and Ce4+ uptake was more at higher initial concentrations than at lower ones. At the same initial concentrations, La3+ and Ce4+ uptake in the combined system was less than that in the single system. The kinetic process of La3+ and Ce4+ adsorpted by Microcystis can be explained with the second order kinetics adsorption model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new kind of inorganic self-assembled monolayer (SAM) was prepared by spontaneous adsorption of polyoxometalate anion, AsMo11VO404-, onto a gold surface from acidic aqueous solution. The adsorption process, structure, and electrochemical properties of the AsMo11VO404- SAM were investigated by quartz crystal microbalance (QCM), electrochemistry, and scanning tunneling microscopy (STM). The QCM data suggested that the self-assembling process could be described in terms of the Langmuir adsorption model, providing the value of the free energy of adsorption at -20 KJ mol(-1). The maximum surface coverage of the AsMo11VO404- SAM on gold surface was determined from the QCM data to be 1.7 x 10(-10) mol cm(-2), corresponding to a close-packed monolayer of AsMo11VO404- anion. The analysis of the voltammograms of the AsMo11VO404- SAM on gold electrode showed three pairs of reversible peaks with an equal surface coverage of 1.78 x 10(-10) mol cm(-2) for each of the peaks, and the value was agreed well with the QCM data. In-situ STM image demonstrated that the AsMo11VO404- SAM was very uniform and no aggregates or multilayer could be observed. Furthermore, the high-resolution STM images revealed that the AsMo11VO404- SAM on Au(lll) surface was composed of square unit cells with a lattice space of 10-11 Angstrom at +0.7 V (vs Ag\AgCl). The value was quite close to the diameter of AsMo11VO404- anion obtained from X-ray crystallographic study. The surface coverage of the AsMo11VO404- SAM on gold electrode estimated from the STM image was around 1.8 x 10(-10) mol cm(-2), which was consistent with the QCM and electrochemical results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Four main methods, such as weight loss test, EIS, adsorption isotherm and quantum chemical calculation were employed to study the inhibition efficiency and mechanism of three derivatives on mild steel in acid solution, whose inhibition efficiency were proved to follow the order of DMTT > NMTT > PMTT, The adsorption model of DMTT was established at different temperature according to the fitted results. The quantum chemical results indicated that the adsorption sites of the derivatives were strongly centralized on benzene ring, triazole ring, etc. QSAR was set up to explain the relationship of molecular structure and the inhibition effect of the derivatives. (C) 2008 Elsevier Ltd. All rights reserved.