292 resultados para Adrenocortical adenoma


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dysregulation of the WNT and insulin-like growth factor 2 (IGF2) signaling pathways has been implicated in sporadic and syndromic forms of adrenocortical carcinoma (ACC). Abnormal beta-catenin staining and CTNNB1 mutations are reported to be common in both adrenocortical adenoma and ACC, whereas elevated IGF2 expression is associated primarily with ACC. To better understand the contribution of these pathways in the tumorigenesis of ACC, we examined clinicopathological and molecular data and used mouse models. Evaluation of adrenal tumors from 118 adult patients demonstrated an increase in CTNNB1 mutations and abnormal beta-catenin accumulation in both adrenocortical adenoma and ACC. In ACC, these features were adversely associated with survival. Mice with stabilized beta-catenin exhibited a temporal progression of increased adrenocortical hyperplasia, with subsequent microscopic and macroscopic adenoma formation. Elevated Igf2 expression alone did not cause hyperplasia. With the combination of stabilized beta-catenin and elevated Igf2 expression, adrenal glands were larger, displayed earlier onset of hyperplasia, and developed more frequent macroscopic adenomas (as well as one carcinoma). Our results are consistent with a model in which dysregulation of one pathway may result in adrenal hyperplasia, but accumulation of a second or multiple alterations is necessary for tumorigenesis. (Ant J Pathol 2012, 181:1017-1033; http://dx.doi.org/10.1016/j.ajpath.2012.05.026)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les lésions surrénaliennes surviennent dans la population générale à une fréquence d’environ 2-3%. Parmi les anomalies génétiques identifiées jusqu’à présent dans les tumeurs surrénaliennes, les mutations somatiques de β-caténine sont les plus prévalentes. Elles sont présentes dans environ 20% des adénomes et carcinomes cortico-surrénaliens. β-caténine est l’élément central de la voie canonique de WNT qui joue un rôle crucial dans le développement embryonnaire, l’homéostase et la tumourigenèse. Les mutations activatrices de β-caténine conduisent à l’accumulation nucléaire de β- caténine qui interagit avec les TCF/LEF-1 qui active la transcription des gènes cibles. Les gènes cibles de β-caténine, varient et dépendent du contexte cellulaire. Dans la glande surrénale, les gènes cibles de β-caténine sont inconnus. Nous avons effectué des études de microarray qui nous ont permis d’identifier 490 transcrits dérégulés dans les adénomes corticosurrénaliens porteurs de mutations ponctuelles de β-caténine. L’expression aberrante d’ISM1, RALBP1, PDE2A, CDH12, ENC1, PHYHIP et CITED2 dans les adénomes porteurs de mutations de β-caténine a été confirmée par PCR en temps réel. Le traitement des cellules humaines de carcinome cortico-surrénalien H295R (mutation de CTNNB1, Ser45Prol) avec les inhibiteurs de β-caténine/TCF (PKF115-584 et PNU74654) ont confirmé l'implication de β-caténine dans la régulation transcriptionelle d’ISM1, RALBP1, PDE2A, ENC1 et CITED2. En conclusion, nos travaux ont conduit à l’identification de nouveaux gènes cibles de β-catenin impliqués dans la tumourigenèse cortico-surrénalienne.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Malignant neoplasia of the adrenal cortex is usually associated with very poor prognosis. When adrenocortical neoplasms are diagnosed in the early stages, distinction between carcinoma and adenoma can be very difficult to accomplish, since there is yet no reliable marker to predict tumor recurrence or dissemination. GATA transcription factors play an essential role in the developmental control of cell fate, cell proliferation and differentiation, organ morphogenesis, and tissue-specific gene expression. Normal mouse adrenal cortex expresses GATA-6 while its malignant counterpart only expresses GATA-4. The goal of the present study was to assess whether this reciprocal change in the expression of GATA factors might be relevant for predicting the prognosis of human adrenocortical neoplasms. Since human adrenal cortices express luteinizing hormone (LH/hCG) receptor and the gonadotropins are known to up-regulate GATA-4 in gonadal tumor cell lines, we also studied the expression of LH/hCG receptor. Methods We conducted a study on 13 non-metastasizing (NM) and 10 metastasizing/recurrent (MR) tumors obtained from a group of twenty-two adult and pediatric patients. The expression of GATA-4, GATA-6, and LH/hCG receptor (LHR) in normal and tumoral human adrenal cortices was analysed using reverse transcriptase-polymerase chain reaction (RT-PCR) complemented by dot blot hybridization. Results Messenger RNA for GATA-6 was detected in normal adrenal tissue, as well as in the totality of NM and MR tumors. GATA-4, by its turn, was detected in normal adrenal tissue, in 11 out of 13 NM tumors, and in 9 of the 10 MR tumors, with larger amounts of mRNA found among those presenting aggressive clinical behavior. Transcripts for LH receptor were observed both in normal tissue and neoplasms. A more intense LHR transcript accumulation was observed on those tumors with better clinical outcome. Conclusion Our data suggest that the expression of GATA-6 in human adrenal cortex is not affected by tumorigenesis. GATA-4 expression is more abundant in MR tumors, while NM tumors express more intensely LHR. Further studies with larger cohorts are needed to test whether relative expression levels of LHR or GATA-4 might be used as prognosis predictors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adrenocortical tumors are rare in children and present with variable signs depending on the type of hormone excess. We herein describe the unusual presentation of a child with adrenocortical tumor and introduce the concept of in vitro chemosensitivity testing. CASE REPORT: A 10.5-year-old girl presented with hypertrichosis/hirsutism and weight loss. The weight loss and behavioral problems, associated with halted puberty and growth, led to the initial diagnosis of anorexia nervosa. However, subsequent weight gain but persisting arrest in growth and puberty and the appearance of central fat distribution prompted further evaluation. RESULTS AND FOLLOW-UP: 24h-urine free cortisol was elevated. Morning plasma ACTH was undetectable, while cortisol was elevated and circadian rhythmicity was absent. Thus a hormonally active adrenal cortical tumor (ACT) was suspected. On magnetic resonance imaging (MRI) a unilateral, encapsulated tumor was found which was subsequently removed surgically. Tissue was investigated histologically and for chemosensitivity in primary cell cultures. Although there were some risk factors for malignancy, the tumor was found to be a typical adenoma. Despite this histology, tumor cells survived in culture and were sensitive to cisplatin in combination with gemcitabine or paclitaxel. At surgery, the patient was started on hydrocortisone replacement which was unsuccessfully tapered over 3 months. Full recovery of the hypothalamus-pituitary-adrenal axis occurred only after 3 years. CONCLUSIONS: The diagnosis of a hormonally active adrenocortical tumor is often delayed because of atypical presentation. Cortisol replacement following unilateral tumor excision is mandatory and may be required for months or years. Individualized chemosensitivity studies carried out on primary cultures established from the tumor tissue itself may provide a tool in evaluating the effectiveness of chemotherapeutic drugs in the event that the adrenocortical tumor may prove to be carcinoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"...The mTOR protein expression in colorectal adenomas has not been widely reported in the literature. Our recent study demonstrated no significant difference in mTOR protein expression in adenomas compared to carcinomas of the large intestine [1]. However, mTOR mRNA showed lower expression in colorectal adenomas compared to colorectal adenocarcinomas..."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carcinoma ex pleomorphic adenoma (Ca ex PA) is a carcinoma arising from a primary or recurrent benign pleomorphic adenoma. It often poses a diagnostic challenge to clinicians and pathologists. This study intends to review the literature and highlight the current clinical and molecular perspectives about this entity. The most common clinical presentation of CA ex PA is of a firm mass in the parotid gland. The proportion of adenoma and carcinoma components determines the macroscopic features of this neoplasm. The entity is difficult to diagnose pre-operatively. Pathologic assessment is the gold standard for making the diagnosis. Treatment for Ca ex PA often involves an ablative surgical procedure which may be followed by radiotherapy. Overall, patients with Ca ex PA have a poor prognosis. Accurate diagnosis and aggressive surgical management of patients presenting with Ca ex PA can increase their survival rates. Molecular studies have revealed that the development of Ca ex PA follows a multi-step model of carcinogenesis, with the progressive loss of heterozygosity at chromosomal arms 8q, then 12q and finally 17p. There are specific candidate genes in these regions that are associated with particular stages in the progression of Ca ex PA. In addition, many genes which regulate tumour suppression, cell cycle control, growth factors and cell-cell adhesion play a role in the development and progression of Ca ex PA. It is hopeful that these molecular data can give clues for the diagnosis and management of the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The imprinted gene, neuronatin (NNAT), is one of the most abundant transcripts in the pituitary and is thought to be involved in the development and maturation of this gland. In a recent whole-genome approach, exploiting a pituitary tumour cell line, we identified hypermethylation associated loss of NNAT. In this report, we determined the expression pattern of NNAT in individual cell types of the normal gland and within each of the different pituitary adenoma subtypes. In addition, we determined associations between expression and CpG island methylation and used colony forming efficiency assays (CFE) to gain further insight into the tumour-suppressor function of this gene. Immunohistochemical (IHC) co-localization studies of normal pituitaries showed that each of the hormone secreting cells (GH, PRL, ACTH, FSH and TSH) expressed NNAT. However, 33 out of 47 adenomas comprising, 11 somatotrophinomas, 10 prolactinomas, 12 corticotrophinomas and 14 non-functioning tumours, irrespective of subtype failed to express either NNAT transcript or protein as determined by quantitative real-time RT-PCR and IHC respectively. In normal pituitaries and adenomas that expressed NNAT the promoter-associated CpG island showed characteristics of an imprinted gene where approximately 50% of molecules were densely methylated. However, in the majority of adenomas that showed loss or significantly reduced expression of NNAT, relative to normal pituitaries, the gene-associated CpG island showed significantly increased methylation. Induced expression of NNAT in transfected AtT-20 cells significantly reduced CFE. Collectively, these findings point to an important role for NNAT in the pituitary and perhaps tumour development in this gland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Much of the global cancer research is focused on the most prevalent tumors; yet, less common tumor types warrant investigation, since A rare disorder is not necessarily an unimportant one . The present work discusses a rare tumor type, the benign adenomas of the pituitary gland, and presents the advances which, during the course of this thesis work, contributed to the elucidation of a fraction of their genetic background. Pituitary adenomas are benign neoplasms of the anterior pituitary lobe, accounting for approximately 15% of all intracranial tumors. Pituitary adenoma cells hypersecrete the hormones normally produced by the anterior pituitary tissue, such as growth hormone (GH) and prolactin (PRL). Despite their non-metastasizing nature, these adenomas can cause significant morbidity and have to be adequately treated; otherwise, they can compromise the patient s quality of life, due to conditions provoked by hormonal hypersecretion, such as acromegaly in the case of GH-secreting adenomas, or due to compressive effects to surrounding tissues. The vast majority of pituitary adenomas arise sporadically, whereas a small subset occur as component of familial endocrine-related tumor syndromes, such as Multiple Endocrine Neoplasia type 1 (MEN1) and Carney complex (CNC). MEN1 is caused by germline mutations in the MEN1 tumor suppressor gene (11q13), whereas the majority of CNC cases carry germline mutations in the PRKAR1A gene (17q24). Pituitary adenomas are also encountered in familial settings outside the context of MEN1 and CNC, but unlike in the latter syndromes, their genetic background until recently remained elusive. Evidence in previous literature supported the notion that a tumor suppressor gene on 11q13, residing very close to but still distinct from MEN1, causes genetic susceptibility to pituitary tumors. The aim of the study was to identify the genetic cause of a low penetrance form of Pituitary Adenoma Predisposition (PAP) in families from Northern Finland. The present work describes the methodological approach that led to the identification of aryl hydrocarbon receptor interacting protein (AIP) as the gene causing PAP. Combining chip-based technologies (SNP and gene expression arrays) with traditional gene mapping methods and genealogy data, we showed that germline AIP mutations cause PAP in familial and sporadic settings. PAP patients were diagnosed with mostly adenomas of the GH/PRL-secreting cell lineage. In Finland, two AIP mutations accounted for 16% of all patients diagnosed with GH-secreting adenomas, and for 40% of patients being younger than 35 years of age at diagnosis. AIP is suggested to act as a tumor suppressor gene, a notion supported by the nature of the identified mutations (most are truncating) and the biallelic inactivation of AIP in the tumors studied. AIP has been best characterized as a cytoplasmic interaction partner of aryl hydrocarbon receptor (AHR), also known as dioxin receptor, but it has other partners as well. The mechanisms that underlie AIP-mediated pituitary tumorigenesis are to date largely unknown and warrant further investigation. Because AIP was identified in the genetically homogeneous Finnish population, it was relevant to examine its contribution to PAP in other, more heterogeneous, populations. Analysis of pituitary adenoma patient series of various ethnic origins and differing clinical settings revealed germline AIP mutations in all cohorts studied, albeit with low frequencies (range 0.8-7.4%). Overall, PAP patients were typically diagnosed at a young age (range 8-41 years), mainly with GH-secreting adenomas, without strong family history of endocrine disease. Because many PAP patients did not display family history of pituitary adenomas, detection of the condition appeared challenging. AIP immunohistochemistry was tested as a molecular pre-screening tool on mutation-positive versus mutation-negative tumors, and proved to be a potentially useful predictor of PAP. Mutation screening of a large cohort of colorectal, breast, and prostate tumors did not reveal somatic AIP mutations. These tumors, apart from being the most prevalent among men and women worldwide, have been associated with acromegaly, particularly colorectal neoplasia. In this material, AIP did not appear to contribute to the pathogenesis of these common tumor types and other genes seem likely to play a role in such tumorigenesis. Finally, the contribution of AIP in pediatric onset pituitary adenomas was examined in a unique population-based cohort of sporadic pituitary adenoma patients from Italy. Germline AIP mutations may account for a subset of pediatric onset GH-secreting adenomas (in this study one of seven GH-secreting adenoma cases or 14.3%), and appear to be enriched among young (≤25 years old) patients. In summary, this work reveals a novel tumor susceptibility gene, namely AIP, which causes genetic predisposition to pituitary adenomas, in particular GH-secreting adenomas. Moreover, it provides molecular tools for identification of individuals predisposed for PAP. Further elaborate studies addressing the functional role of AIP in normal and tumor cells will hopefully expand our knowledge on endocrine neoplasia and reveal novel cellular mechanisms of pituitary tumorigenesis, including potential drug targets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pituitary adenomas are common benign neoplasms. Although most of them are sporadic, a minority occurs in familial settings. Heterozygous germline mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene were found to underlie familial pituitary adenomas, a condition designated as pituitary adenoma predisposition (PAP). PAP confers incomplete penetrance of mostly growth hormone (GH) secreting adenomas in young patients, who often lack a family history of pituitary adenomas. This thesis work aimed to clarify the molecular and clinical characteristics of PAP. Applying the multiplex ligation-dependent probe amplification assay (MLPA), we found large genomic AIP deletions to account for a subset of PAP. Therefore, MLPA could be considered in PAP suspected patients with no AIP mutations found with conventional sequencing. We generated an Aip mouse model to examine pituitary tumorigenesis in vivo. The heterozygous Aip mutation conferred complete penetrance of pituitary adenomas that were mostly GH-secreting, rendering the phenotype of the Aip mouse similar to that of PAP patients. We suggest that AIP may function as a candidate gatekeeper gene in somatotrophs. To clarify molecular mechanisms of tumorigenesis, we elucidated the expression of AIP-related molecules in human and mouse pituitary tumors. The expression of aryl hydrocarbon receptor nuclear translocator (ARNT) was reduced in mouse Aip-deficient adenomas, and similar ARNT reduction was also evident in human AIP mutation positive adenomas. This suggests that in addition to participating in the hypoxia pathway, estrogen receptor signaling and xenobiotic response pathways, ARNT may play a role in AIP-related tumorigenesis. We also studied the characteristics and the response to therapy of PAP patients and found them to have an aggressive disease phenotype with young age at onset. Therefore, improvement in treatment outcomes of PAP patients would require their efficient identification and earlier diagnosis of the pituitary adenomas. The possible role of the RET proto-oncogene in tumorigenesis of familial AIP mutation negative pituitary adenomas was evaluated, but none of the found RET germline variants were considered pathogenic. Surprisingly, RET immunohistochemistry suggested possible underexpression of RET in AIP mutation positive pituitary adenomas an observation that merits further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcription factors play a key role in tumor development, in which dysfunction of genes regulating tissue growth and differentiation is a central phenomenon. The GATA family of transcription factors consists of six members that bind to a consensus DNA sequence (A/T)GATA(A/G) in gene promoters and enhancers. The two GATA factors expressed in the adrenal cortex are GATA-4 and GATA-6. In both mice and humans, GATA-4 can be detected only during the fetal period, whereas GATA-6 expression is abundant both throughout development and in the adult. It is already established that GATA factors are important in both normal development and tumorigenesis of several endocrine organs, and expression of GATA-4 and GATA-6 is detected in adrenocortical tumors. The aim of this study was to elucidate the function of these factors in adrenocortical tumor growth. In embryonal development, the adrenocortical cells arise and differentiate from a common pool with gonadal steroidogenic cells, the urogenital ridge. As the adult adrenal cortex undergoes constant renewal, it is hypothesized that undifferentiated adrenocortical progenitor cells reside adjacent to the adrenal capsule and give rise to daughter cells that differentiate and migrate centripetally. A diverse array of hormones controls the differentiation, growth and survival of steroidogenic cells in the adrenal gland and the gonads. Factors such as luteinizing hormone and inhibins, traditionally associated with gonadal steroidogenic cells, can also influence the function of adrenocortical cells in physiological and pathophysiological states. Certain inbred strains of mice develop subcapsular adrenocortical tumors in response to gonadectomy. In this study, we found that these tumors express GATA-4, normally absent from the adult adrenal cortex, while GATA-6 expression is downregulated. Gonadal markers such as luteinizing hormone receptor, anti-Müllerian hormone and P450c17 are also expressed in the neoplastic cells, and the tumors produce gonadal hormones. The tumor cells have lost the expression of melanocortin-2 receptor and the CYP enzymes necessary for the synthesis of corticosterone and aldosterone. By way of xenograft studies utilizing NU/J nude mice, we confirmed that chronic gonadotropin elevation is sufficient to induce adrenocortical tumorigenesis in susceptible inbred strains. Collectively, these studies suggest that subcapsular adrenocortical progenitor cells can, under certain conditions, adopt a gonadal fate. We studied the molecular mechanisms involved in gene regulation in endocrine cells in order to elucidate the role of GATA factors in endocrine tissues. Ovarian granulosa cells express both GATA-4 and GATA-6, and the TGF-β signaling pathway is active in these cells. Inhibin-α is both a target gene for, and an atypical or antagonistic member of the TGF-β growth factor superfamily. In this study, we show that GATA-4 is required for TGF-β-mediated inhibin-α promoter activation in granulosa cells, and that GATA-4 physically interacts with Smad3, a TGF-β downstream protein. Apart from the regulation of steroidogenesis and other events in normal tissues, TGF-β signaling is implicated in tumors of multiple organs, including the adrenal cortex. Another signaling pathway found often to be aberrantly active in adrenocortical tumors is the Wnt pathway. As both of these pathways regulate the expression of inhibin-α, a transcriptional target for GATA-4 and GATA-6, we wanted to investigate whether GATA factors are associated with the components of these signaling cascades in human adrenocortical tumors. We found that the expression of Wnt co-receptors LRP5 and LRP6, Smad3, GATA-6 and SF-1 was diminished in adrenocortical carcinomas with poor outcome. All of these factors drive inhibin-α expression, and their expression in adrenocortical tumors correlated with that of inhibin-α. The results support a tumor suppressor role previously suggested for inhibin-α in the mouse adrenal cortex, and offer putative pathways associated with adrenocortical tumor aggressiveness. Unraveling the role of GATA factors and associated molecules in human and mouse adrenocortical tumors could ultimately contribute to the development of diagnostic tools and future therapies for these diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brominated flame retardants (BFRs) and brominated dioxins are emerging persistent organic pollutants that are ubiquitous in the environment and can be accumulated by wildlife and humans. These chemicals can disturb endocrine function. Recent studies have demonstrated that one of the mechanisms of endocrine disruption by chemicals is modulation of steroidogenic gene expression or enzyme activities. In this study, an in vitro assay based on the H295R human adrenocortical carcinoma cell line, which possesses most key genes or enzymes involved in steroidogenesis, was used to examine the effects of five bromophenols, two polybrominated biphenyls (PBBs 77 and 169), 2,3,7,8-tetrabromodibenzo-p-dioxin, and 2,3,7,8-tetrabromodibenzofuran on the expression of 10 key steroidogenic genes. The H295R cells were exposed to various BFR concentrations for 48 h, and the expression of specific genescytochrome P450 (CYP11A, CYP11B2, CYP17, CYP19, and CYP21), 3 beta-hydroxysteroid dehydrogenase (3PHSD2), 17 beta-hydroxysteroid dehydrogenase (17 beta HSD1 and 17 beta HSD4), steroidogenic acute regulatory protein (StAR), and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR)-was quantitatively measured using real-time polymerase chain reaction. Cell viability was not affected at the doses tested. Most of the genes were either up- or down-regulated, to some extent, by BFR exposure. Among the genes tested, 3PHSD2 was the most markedly up-regulated, with a range of magnitude from 1.6- to 20-fold. The results demonstrate that bromophenol, bromobiphenyls, and bromodibenzo-p-dioxin/furan are able to modulate steroidogenic gene expression, which may lead to endocrine disruption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fifty-one in vivo characterized autonomous single adenomas have been studied for functional parameters in vitro, for gene and protein expression and for pathology, and have been systematically compared to the corresponding extratumoral quiescent tissue. The adenomas were characterized by a high level of iodide trapping that corresponds to a high level of Na+ /iodide symporter gene expression, a high thyroperoxidase mRNA and protein content, and a low H2O2 generation. This explains the iodide metabolism characteristics demonstrated before, ie, the main cause of the "hot" character of the adenomas is their increased iodide transport. The adenomas spontaneously secreted higher amounts of thyroid hormone than the quiescent tissue and in agreement with previous in vivo data, this secretion could be further enhanced by thyrotropin (TSH). Inositol uptake was also increased but there was no spontaneous increase of the generation of inositol phosphates and this metabolism could be further activated by TSH. These positive responses to TSH are in agreement with the properties of TSH-stimulated thyroid cells in vitro and in vivo. They are compatible with the characteristics of mutated TSH receptors whose constitutive activation accounts for the majority of autonomous thyroid adenomas in Europe. The number of cycling cells, as evaluated by MIB-1 immunolabeling was low but increased in comparison with the corresponding quiescent tissue or normal tissue. The cycling cells are observed mainly at the periphery; there was very little apoptosis. Both findings account for the slow growth of these established adenomas. On the other hand, by thyroperoxidase immunohistochemistry, the whole lesion appeared hyperfunctional, which demonstrates a dissociation of mitogenic and functional stimulations. Thyroglobulin, TSH receptor, and E-cadherin mRNA accumulations were not modified in a consistent way, which confirms the near-constitutive expression of the corresponding genes in normal differentiated tissue. On the contrary, early immediate genes expressions (c-myc, NGF1B, egr 1, genes of the fos and jun families) were decreased. This may be explained by the proliferative heterogeneity of the lesion and the previously described short, biphasic expression of these genes when induced by mitogenic agents. All the characteristics of the autonomous adenomas can therefore be explained by the effect of the known activating mutations of genes coding for proteins of the TSH cyclic adenosine monophosphate (cAMP) cascade, all cells being functionally activated while only those at the periphery multiply. The reason of this heterogeneity is unknown.