990 resultados para Adjusted historical simulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

O presente trabalho propõe para o cálculo VaR o modelo de simulação histórica, com os retornos atualizados pela volatilidade realizada calculada a partir de dados intradiários. A base de dados consiste de cinco ações entre as mais líquidas do Ibovespa de distintos segmentos. Para a metodologia proposta utilizamos duas teorias da literatura empírica – simulação histórica ajustada e volatilidade realizada. Para análise e verificação do desempenho da metodologia proposta utilizamos o Teste de Kupiec e o Teste de Christoffersen.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Modeling and forecasting of implied volatility (IV) is important to both practitioners and academics, especially in trading, pricing, hedging, and risk management activities, all of which require an accurate volatility. However, it has become challenging since the 1987 stock market crash, as implied volatilities (IVs) recovered from stock index options present two patterns: volatility smirk(skew) and volatility term-structure, if the two are examined at the same time, presents a rich implied volatility surface (IVS). This implies that the assumptions behind the Black-Scholes (1973) model do not hold empirically, as asset prices are mostly influenced by many underlying risk factors. This thesis, consists of four essays, is modeling and forecasting implied volatility in the presence of options markets’ empirical regularities. The first essay is modeling the dynamics IVS, it extends the Dumas, Fleming and Whaley (DFW) (1998) framework; for instance, using moneyness in the implied forward price and OTM put-call options on the FTSE100 index, a nonlinear optimization is used to estimate different models and thereby produce rich, smooth IVSs. Here, the constant-volatility model fails to explain the variations in the rich IVS. Next, it is found that three factors can explain about 69-88% of the variance in the IVS. Of this, on average, 56% is explained by the level factor, 15% by the term-structure factor, and the additional 7% by the jump-fear factor. The second essay proposes a quantile regression model for modeling contemporaneous asymmetric return-volatility relationship, which is the generalization of Hibbert et al. (2008) model. The results show strong negative asymmetric return-volatility relationship at various quantiles of IV distributions, it is monotonically increasing when moving from the median quantile to the uppermost quantile (i.e., 95%); therefore, OLS underestimates this relationship at upper quantiles. Additionally, the asymmetric relationship is more pronounced with the smirk (skew) adjusted volatility index measure in comparison to the old volatility index measure. Nonetheless, the volatility indices are ranked in terms of asymmetric volatility as follows: VIX, VSTOXX, VDAX, and VXN. The third essay examines the information content of the new-VDAX volatility index to forecast daily Value-at-Risk (VaR) estimates and compares its VaR forecasts with the forecasts of the Filtered Historical Simulation and RiskMetrics. All daily VaR models are then backtested from 1992-2009 using unconditional, independence, conditional coverage, and quadratic-score tests. It is found that the VDAX subsumes almost all information required for the volatility of daily VaR forecasts for a portfolio of the DAX30 index; implied-VaR models outperform all other VaR models. The fourth essay models the risk factors driving the swaption IVs. It is found that three factors can explain 94-97% of the variation in each of the EUR, USD, and GBP swaption IVs. There are significant linkages across factors, and bi-directional causality is at work between the factors implied by EUR and USD swaption IVs. Furthermore, the factors implied by EUR and USD IVs respond to each others’ shocks; however, surprisingly, GBP does not affect them. Second, the string market model calibration results show it can efficiently reproduce (or forecast) the volatility surface for each of the swaptions markets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this thesis we are interested in financial risk and the instrument we want to use is Value-at-Risk (VaR). VaR is the maximum loss over a given period of time at a given confidence level. Many definitions of VaR exist and some will be introduced throughout this thesis. There two main ways to measure risk and VaR: through volatility and through percentiles. Large volatility in financial returns implies greater probability of large losses, but also larger probability of large profits. Percentiles describe tail behaviour. The estimation of VaR is a complex task. It is important to know the main characteristics of financial data to choose the best model. The existing literature is very wide, maybe controversial, but helpful in drawing a picture of the problem. It is commonly recognised that financial data are characterised by heavy tails, time-varying volatility, asymmetric response to bad and good news, and skewness. Ignoring any of these features can lead to underestimating VaR with a possible ultimate consequence being the default of the protagonist (firm, bank or investor). In recent years, skewness has attracted special attention. An open problem is the detection and modelling of time-varying skewness. Is skewness constant or there is some significant variability which in turn can affect the estimation of VaR? This thesis aims to answer this question and to open the way to a new approach to model simultaneously time-varying volatility (conditional variance) and skewness. The new tools are modifications of the Generalised Lambda Distributions (GLDs). They are four-parameter distributions, which allow the first four moments to be modelled nearly independently: in particular we are interested in what we will call para-moments, i.e., mean, variance, skewness and kurtosis. The GLDs will be used in two different ways. Firstly, semi-parametrically, we consider a moving window to estimate the parameters and calculate the percentiles of the GLDs. Secondly, parametrically, we attempt to extend the GLDs to include time-varying dependence in the parameters. We used the local linear regression to estimate semi-parametrically conditional mean and conditional variance. The method is not efficient enough to capture all the dependence structure in the three indices —ASX 200, S&P 500 and FT 30—, however it provides an idea of the DGP underlying the process and helps choosing a good technique to model the data. We find that GLDs suggest that moments up to the fourth order do not always exist, there existence appears to vary over time. This is a very important finding, considering that past papers (see for example Bali et al., 2008; Hashmi and Tay, 2007; Lanne and Pentti, 2007) modelled time-varying skewness, implicitly assuming the existence of the third moment. However, the GLDs suggest that mean, variance, skewness and in general the conditional distribution vary over time, as already suggested by the existing literature. The GLDs give good results in estimating VaR on three real indices, ASX 200, S&P 500 and FT 30, with results very similar to the results provided by historical simulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we study both the level of Value-at-Risk (VaR) disclosure and the accuracy of the disclosed VaR figures for a sample of US and international commercial banks. To measure the level of VaR disclosures, we develop a VaR Disclosure Index that captures many different facets of market risk disclosure. Using panel data over the period 1996–2005, we find an overall upward trend in the quantity of information released to the public. We also find that Historical Simulation is by far the most popular VaR method. We assess the accuracy of VaR figures by studying the number of VaR exceedances and whether actual daily VaRs contain information about the volatility of subsequent trading revenues. Unlike the level of VaR disclosure, the quality of VaR disclosure shows no sign of improvement over time. We find that VaR computed using Historical Simulation contains very little information about future volatility.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hedging against tail events in equity markets has been forcefully advocated in the aftermath of recent global financial crisis. Whether this is beneficial to long horizon investors like employees enrolled in defined contribution (DC) plans, however, has been subject to criticism. We conduct historical simulation since 1928 to examine the effectiveness of active and passive tail risk hedging using out of money put options for hypothetical equity portfolios of DC plan participants with 20 years to retirement. Our findings show that the cost of tail hedging exceeds the benefits for a majority of the plan participants during the sample period. However, for a significant number of simulations, hedging result in superior outcomes relative to an unhedged position. Active tail hedging is more effective when employees confront several panic-driven periods characterized by short and sharp market swings in the equity markets over the investment horizon. Passive hedging, on the other hand, proves beneficial when they encounter an extremely rare event like the Great Depression as equity markets go into deep and prolonged decline.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As instituições financeiras são obrigadas por acordos internacionais, como o Acordo de Basiléia, a avaliar o risco de mercado ao qual a instituição está propensa de forma a evitar possíveis contaminações de desastres financeiros em seu patrimônio. Com o intuito de capturar tais fenômenos, surge a necessidade de construir modelos que capturem com mais acurácia movimentos extremos das séries de retornos. O trabalho teve como principal objetivo aplicar a Teoria do Valor Extremo juntamente com Copulas na estimação de quantis extremos para o VaR. Ele utiliza técnicas de simulação de Monte Carlo, Teoria do Valor Extremo e Cópulas com distribuições gaussianas e t. Em contrapartida, as estimativas produzidas serão comparadas com as de um segundo modelo, chamado de simulação histórica de Monte Carlo filtrada, mais conhecida como filtered historical simulation (FHS). As técnicas serão aplicadas a um portfólio de ações de empresas brasileiras.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La dependencia entre las series financieras, es un parámetro fundamental para la estimación de modelos de Riesgo. El Valor en Riesgo (VaR) es una de las medidas más importantes utilizadas para la administración y gestión de Riesgos Financieros, en la actualidad existen diferentes métodos para su estimación, como el método por simulación histórica, el cual no asume ninguna distribución sobre los retornos de los factores de riesgo o activos, o los métodos paramétricos que asumen normalidad sobre las distribuciones. En este documento se introduce la teoría de cópulas, como medida de dependencia entre las series, se estima un modelo ARMA-GARCH-Cópula para el cálculo del Valor en Riesgo de un portafolio compuesto por dos series financiera, la tasa de cambio Dólar-Peso y Euro-Peso. Los resultados obtenidos muestran que la estimación del VaR por medio de copulas es más preciso en relación a los métodos tradicionales.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Explosive volcanic eruptions cause episodic negative radiative forcing of the climate system. Using coupled atmosphere-ocean general circulation models (AOGCMs) subjected to historical forcing since the late nineteenth century, previous authors have shown that each large volcanic eruption is associated with a sudden drop in ocean heat content and sea-level from which the subsequent recovery is slow. Here we show that this effect may be an artefact of experimental design, caused by the AOGCMs not having been spun up to a steady state with volcanic forcing before the historical integrations begin. Because volcanic forcing has a long-term negative average, a cooling tendency is thus imposed on the ocean in the historical simulation. We recommend that an extra experiment be carried out in parallel to the historical simulation, with constant time-mean historical volcanic forcing, in order to correct for this effect and avoid misinterpretation of ocean heat content changes

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dentre os principais desafios enfrentados no cálculo de medidas de risco de portfólios está em como agregar riscos. Esta agregação deve ser feita de tal sorte que possa de alguma forma identificar o efeito da diversificação do risco existente em uma operação ou em um portfólio. Desta forma, muito tem se feito para identificar a melhor forma para se chegar a esta definição, alguns modelos como o Valor em Risco (VaR) paramétrico assumem que a distribuição marginal de cada variável integrante do portfólio seguem a mesma distribuição , sendo esta uma distribuição normal, se preocupando apenas em modelar corretamente a volatilidade e a matriz de correlação. Modelos como o VaR histórico assume a distribuição real da variável e não se preocupam com o formato da distribuição resultante multivariada. Assim sendo, a teoria de Cópulas mostra-se um grande alternativa, à medida que esta teoria permite a criação de distribuições multivariadas sem a necessidade de se supor qualquer tipo de restrição às distribuições marginais e muito menos as multivariadas. Neste trabalho iremos abordar a utilização desta metodologia em confronto com as demais metodologias de cálculo de Risco, a saber: VaR multivariados paramétricos - VEC, Diagonal,BEKK, EWMA, CCC e DCC- e VaR histórico para um portfólio resultante de posições idênticas em quatro fatores de risco – Pre252, Cupo252, Índice Bovespa e Índice Dow Jones

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Várias metodologias de mensuração de risco de mercado foram desenvolvidas e aprimoradas ao longo das últimas décadas. Enquanto algumas metodologias usam abordagens não-paramétricas, outras usam paramétricas. Algumas metodologias são mais teóricas, enquanto outras são mais práticas, usando recursos computacionais através de simulações. Enquanto algumas metodologias preservam sua originalidade, outras metodologias têm abordagens híbridas, juntando características de 2 ou mais metodologias. Neste trabalho, fizemos uma comparação de metodologias de mensuração de risco de mercado para o mercado financeiro brasileiro. Avaliamos os resultados das metodologias não-paramétricas e paramétricas de mensuração de VaR aplicados em uma carteira de renda fixa, renda variável e renda mista durante o período de 2000 a 2006. As metodologias não-paramétricas avaliadas foram: Simulação Histórica pesos fixos, Simulação Histórica Antitética pesos fixos, Simulação Histórica exponencial e Análise de Cenário. E as metodologias paramétricas avaliadas foram: VaR Delta-Normal pesos fixos, VaR Delta-Normal exponencial (EWMA), Simulação de Monte Carlo pesos fixos e Simulação de Monte Carlo exponencial. A comparação destas metodologias foi feita com base em medidas estatísticas de conservadorismo, precisão e eficiência.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Há mais de uma década, o Value-at-Risk (VaR) é utilizado por instituições financeiras e corporações não financeiras para controlar o risco de mercado de carteiras de investimentos. O fato dos métodos paramétricos assumirem a hipótese de normalidade da distribuição de retornos dos fatores de risco de mercado, leva alguns gestores de risco a utilizar métodos por simulação histórica para calcular o VaR das carteiras. A principal crítica à simulação histórica tradicional é, no entanto, dar o mesmo peso na distribuição à todos os retornos encontrados no período. Este trabalho testa o modelo de simulação histórica com atualização de volatilidade proposto por Hull e White (1998) com dados do mercado brasileiro de ações e compara seu desempenho com o modelo tradicional. Os resultados mostraram um desempenho superior do modelo de Hull e White na previsão de perdas para as carteiras e na sua velocidade de adaptação à períodos de ruptura da volatilidade do mercado.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Indexing is a passive investment strategy in which the investor weights bis portfolio to match the performance of a broad-based indexo Since severaI studies showed that indexed portfolios have consistently outperformed active management strategies over the last decades, an increasing number of investors has become interested in indexing portfolios IateIy. Brazilian financiaI institutions do not offer indexed portfolios to their clients at this point in time. In this work we propose the use of indexed portfolios to track the performance oftwo ofthe most important Brazilian stock indexes: the mOVESPA and the FGVIOO. We test the tracking performance of our modeI by a historical simulation. We applied several statistical tests to the data to verify how many stocks should be used to controI the portfolio tracking error within user specified bounds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Market risk exposure plays a key role for nancial institutions risk management. A possible measure for this exposure is to evaluate losses likely to incurwhen the price of the portfolio's assets declines using Value-at-Risk (VaR) estimates, one of the most prominent measure of nancial downside market risk. This paper suggests an evolving possibilistic fuzzy modeling approach for VaR estimation. The approach is based on an extension of the possibilistic fuzzy c-means clustering and functional fuzzy rule-based modeling, which employs memberships and typicalities to update clusters and creates new clusters based on a statistical control distance-based criteria. ePFM also uses an utility measure to evaluate the quality of the current cluster structure. Computational experiments consider data of the main global equity market indexes of United States, London, Germany, Spain and Brazil from January 2000 to December 2012 for VaR estimation using ePFM, traditional VaR benchmarks such as Historical Simulation, GARCH, EWMA, and Extreme Value Theory and state of the art evolving approaches. The results show that ePFM is a potential candidate for VaR modeling, with better performance than alternative approaches.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The recent deregulation in electricity markets worldwide has heightened the importance of risk management in energy markets. Assessing Value-at-Risk (VaR) in electricity markets is arguably more difficult than in traditional financial markets because the distinctive features of the former result in a highly unusual distribution of returns-electricity returns are highly volatile, display seasonalities in both their mean and volatility, exhibit leverage effects and clustering in volatility, and feature extreme levels of skewness and kurtosis. With electricity applications in mind, this paper proposes a model that accommodates autoregression and weekly seasonals in both the conditional mean and conditional volatility of returns, as well as leverage effects via an EGARCH specification. In addition, extreme value theory (EVT) is adopted to explicitly model the tails of the return distribution. Compared to a number of other parametric models and simple historical simulation based approaches, the proposed EVT-based model performs well in forecasting out-of-sample VaR. In addition, statistical tests show that the proposed model provides appropriate interval coverage in both unconditional and, more importantly, conditional contexts. Overall, the results are encouraging in suggesting that the proposed EVT-based model is a useful technique in forecasting VaR in electricity markets. (c) 2005 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este documento evalúa el comportamiento de diferentes métodos (paramétrico, no paramétricos y semi-paramétricos) para estimar el VaR (valor en riesgo) de un portafolio representativo para 7 países latinoamericanos. El cálculo del VaR implica la estimación del i-esimo percentil de la distribución del valor futuro del valor de un portafolio. Los resultados no muestran la existencia de un método que se comporte mejor que los demás. Con un nivel de confianza del 95% los modelos paramétricos que emplean el EWMA se desempeñan en general bien así como con el TGARCH, pero estos modelos tienen un comportamiento pobre cuando la significancia considerada es del 1%.