998 resultados para Adjusted historical simulation
Resumo:
In this study the theoretical part was created to make comparison between different Value at Risk models. Based on that comparison one model was chosen to the empirical part which concentrated to find out whether the model is accurate to measure market risk. The purpose of this study was to test if Volatility-weighted Historical Simulation is accurate in measuring market risk and what improvements does it bring to market risk measurement compared to traditional Historical Simulation. Volatility-weighted method by Hull and White (1998) was chosen In order to improve the traditional methods capability to measure market risk. In this study we found out that result based on Historical Simulation are dependent on chosen time period, confidence level and how samples are weighted. The findings of this study are that we cannot say that the chosen method is fully reliable in measuring market risk because back testing results are changing during the time period of this study.
Resumo:
O presente trabalho propõe para o cálculo VaR o modelo de simulação histórica, com os retornos atualizados pela volatilidade realizada calculada a partir de dados intradiários. A base de dados consiste de cinco ações entre as mais líquidas do Ibovespa de distintos segmentos. Para a metodologia proposta utilizamos duas teorias da literatura empírica – simulação histórica ajustada e volatilidade realizada. Para análise e verificação do desempenho da metodologia proposta utilizamos o Teste de Kupiec e o Teste de Christoffersen.
Resumo:
Työn tavoitteena oli luoda laskentamalli sähkökaupan asiakassegmenttien riskikorjatun kannattavuuden selvittämiseksi. Lisäksi tavoitteena oli löytää tekijät, jotka aiheuttavat hyvän ja huonon kannattavuuden esiintymisen. Työssä selvitettiin sähkökaupan kustannusten ja riskien taustatekijät. Lisäksi työssä laadittiin menetelmät kustannusten laskemiselle ja kohdistamiselle sekä riskien määrittämiselle. Asiakkaat segmentoitiin kustannuksiin sekä riskeihin vaikuttavien tekijöiden mukaan. Kannattavuuslaskennan perustana käytettiin katetuottoajattelua ja asiakkaan sähkönhankintakustannus määritettiin markkinaehtoisesti siten, että sähkönkäytölle laskettiin tarkasteluhetken markkina-arvo. Kustannusten jakamisessa noudatettiin aiheuttamisperiaatetta ja riskit laskettiin historialliseen simulaatioon perustuen. Laskentamallilla saatujen tulosten perusteella puolet segmenteistä ja 83 % asiakkaista oli kannattavia. Kannattavuuteen vaikuttivat eniten sopimuksen pysyvyys ja hinnoittelutapa sekä erityisesti annetut alennukset ja tuote eli tariffi. Lisäksi havaittiin, että nykyinen asiakastietojärjestelmä ei tue riittävästi asiakaskannattavuuksien selvittämistä uusiutuneilla sähkömarkkinoilla.
Resumo:
Dissertação de Mestrado em Finanças Empresariais
Resumo:
A determinação do preço justo de um contrato de opções, trouxe enormes desa os a diversos ramos da Matemática procurando desenvolver e aperfeiçoar modelos e métodos que melhor representem os comportamentos dos mercados nanceiros. A avaliação de opções americanas apresenta uma di culdade acrescida, uma vez que é necessário determinar uma estratégia óptima ao seu exercício antecipado, já que estas opções podem ser exercidas em qualquer momento até à sua maturidade. Investigações recentes mostram que metodologias baseadas em técnicas de simulação podem ser usadas com sucesso neste tipo de opções (Duan and Simonato (2001), Longsta and Schwartz (2001), Stentoft (2005)). Neste trabalho, usamos métodos de Monte Carlo para avaliar opções Americanas, recorrendo à abordagem sugerida por Longsta and Schwartz (2001), combinando modelos GARCH para o subjacente com Filtered Historical Simulation (Barone, Engle and Mancini (2008)).
Resumo:
ABSTRACT: Despite the reduction in deforestation rate in recent years, the impact of global warming by itself can cause changes in vegetation cover. The objective of this work was to investigate the possible changes on the major Brazilian biome, the Amazon Rainforest, under different climate change scenarios. The dynamic vegetation models may simulate changes in vegetation distribution and the biogeochemical processes due to climate change. Initially, the Inland dynamic vegetation model was forced with initial and boundary conditions provided by CFSR and the Eta regional climate model driven by the historical simulation of HadGEM2-ES. These simulations were validated using the Santarém tower data. In the second part, we assess the impact of a future climate change on the Amazon biome by applying the Inland model forced with regional climate change projections. The projections show that some areas of rainforest in the Amazon region are replaced by deciduous forest type and grassland in RCP4.5 scenario and only by grassland in RCP8.5 scenario at the end of this century. The model indicates a reduction of approximately 9% in the area of tropical forest in RCP4.5 scenario and a further reduction in the RCP8.5 scenario of about 50% in the eastern region of Amazon. Although the increase of CO2 atmospheric concentration may favour the growth of trees, the projections of Eta-HadGEM2-ES show increase of temperature and reduction of rainfall in the Amazon region, which caused the forest degradation in these simulations.
Resumo:
La dependencia entre las series financieras, es un parámetro fundamental para la estimación de modelos de Riesgo. El Valor en Riesgo (VaR) es una de las medidas más importantes utilizadas para la administración y gestión de Riesgos Financieros, en la actualidad existen diferentes métodos para su estimación, como el método por simulación histórica, el cual no asume ninguna distribución sobre los retornos de los factores de riesgo o activos, o los métodos paramétricos que asumen normalidad sobre las distribuciones. En este documento se introduce la teoría de cópulas, como medida de dependencia entre las series, se estima un modelo ARMA-GARCH-Cópula para el cálculo del Valor en Riesgo de un portafolio compuesto por dos series financiera, la tasa de cambio Dólar-Peso y Euro-Peso. Los resultados obtenidos muestran que la estimación del VaR por medio de copulas es más preciso en relación a los métodos tradicionales.
Resumo:
Explosive volcanic eruptions cause episodic negative radiative forcing of the climate system. Using coupled atmosphere-ocean general circulation models (AOGCMs) subjected to historical forcing since the late nineteenth century, previous authors have shown that each large volcanic eruption is associated with a sudden drop in ocean heat content and sea-level from which the subsequent recovery is slow. Here we show that this effect may be an artefact of experimental design, caused by the AOGCMs not having been spun up to a steady state with volcanic forcing before the historical integrations begin. Because volcanic forcing has a long-term negative average, a cooling tendency is thus imposed on the ocean in the historical simulation. We recommend that an extra experiment be carried out in parallel to the historical simulation, with constant time-mean historical volcanic forcing, in order to correct for this effect and avoid misinterpretation of ocean heat content changes
Resumo:
Dentre os principais desafios enfrentados no cálculo de medidas de risco de portfólios está em como agregar riscos. Esta agregação deve ser feita de tal sorte que possa de alguma forma identificar o efeito da diversificação do risco existente em uma operação ou em um portfólio. Desta forma, muito tem se feito para identificar a melhor forma para se chegar a esta definição, alguns modelos como o Valor em Risco (VaR) paramétrico assumem que a distribuição marginal de cada variável integrante do portfólio seguem a mesma distribuição , sendo esta uma distribuição normal, se preocupando apenas em modelar corretamente a volatilidade e a matriz de correlação. Modelos como o VaR histórico assume a distribuição real da variável e não se preocupam com o formato da distribuição resultante multivariada. Assim sendo, a teoria de Cópulas mostra-se um grande alternativa, à medida que esta teoria permite a criação de distribuições multivariadas sem a necessidade de se supor qualquer tipo de restrição às distribuições marginais e muito menos as multivariadas. Neste trabalho iremos abordar a utilização desta metodologia em confronto com as demais metodologias de cálculo de Risco, a saber: VaR multivariados paramétricos - VEC, Diagonal,BEKK, EWMA, CCC e DCC- e VaR histórico para um portfólio resultante de posições idênticas em quatro fatores de risco – Pre252, Cupo252, Índice Bovespa e Índice Dow Jones
Resumo:
Várias metodologias de mensuração de risco de mercado foram desenvolvidas e aprimoradas ao longo das últimas décadas. Enquanto algumas metodologias usam abordagens não-paramétricas, outras usam paramétricas. Algumas metodologias são mais teóricas, enquanto outras são mais práticas, usando recursos computacionais através de simulações. Enquanto algumas metodologias preservam sua originalidade, outras metodologias têm abordagens híbridas, juntando características de 2 ou mais metodologias. Neste trabalho, fizemos uma comparação de metodologias de mensuração de risco de mercado para o mercado financeiro brasileiro. Avaliamos os resultados das metodologias não-paramétricas e paramétricas de mensuração de VaR aplicados em uma carteira de renda fixa, renda variável e renda mista durante o período de 2000 a 2006. As metodologias não-paramétricas avaliadas foram: Simulação Histórica pesos fixos, Simulação Histórica Antitética pesos fixos, Simulação Histórica exponencial e Análise de Cenário. E as metodologias paramétricas avaliadas foram: VaR Delta-Normal pesos fixos, VaR Delta-Normal exponencial (EWMA), Simulação de Monte Carlo pesos fixos e Simulação de Monte Carlo exponencial. A comparação destas metodologias foi feita com base em medidas estatísticas de conservadorismo, precisão e eficiência.
Resumo:
Há mais de uma década, o Value-at-Risk (VaR) é utilizado por instituições financeiras e corporações não financeiras para controlar o risco de mercado de carteiras de investimentos. O fato dos métodos paramétricos assumirem a hipótese de normalidade da distribuição de retornos dos fatores de risco de mercado, leva alguns gestores de risco a utilizar métodos por simulação histórica para calcular o VaR das carteiras. A principal crítica à simulação histórica tradicional é, no entanto, dar o mesmo peso na distribuição à todos os retornos encontrados no período. Este trabalho testa o modelo de simulação histórica com atualização de volatilidade proposto por Hull e White (1998) com dados do mercado brasileiro de ações e compara seu desempenho com o modelo tradicional. Os resultados mostraram um desempenho superior do modelo de Hull e White na previsão de perdas para as carteiras e na sua velocidade de adaptação à períodos de ruptura da volatilidade do mercado.
Resumo:
Indexing is a passive investment strategy in which the investor weights bis portfolio to match the performance of a broad-based indexo Since severaI studies showed that indexed portfolios have consistently outperformed active management strategies over the last decades, an increasing number of investors has become interested in indexing portfolios IateIy. Brazilian financiaI institutions do not offer indexed portfolios to their clients at this point in time. In this work we propose the use of indexed portfolios to track the performance oftwo ofthe most important Brazilian stock indexes: the mOVESPA and the FGVIOO. We test the tracking performance of our modeI by a historical simulation. We applied several statistical tests to the data to verify how many stocks should be used to controI the portfolio tracking error within user specified bounds.
Resumo:
Market risk exposure plays a key role for nancial institutions risk management. A possible measure for this exposure is to evaluate losses likely to incurwhen the price of the portfolio's assets declines using Value-at-Risk (VaR) estimates, one of the most prominent measure of nancial downside market risk. This paper suggests an evolving possibilistic fuzzy modeling approach for VaR estimation. The approach is based on an extension of the possibilistic fuzzy c-means clustering and functional fuzzy rule-based modeling, which employs memberships and typicalities to update clusters and creates new clusters based on a statistical control distance-based criteria. ePFM also uses an utility measure to evaluate the quality of the current cluster structure. Computational experiments consider data of the main global equity market indexes of United States, London, Germany, Spain and Brazil from January 2000 to December 2012 for VaR estimation using ePFM, traditional VaR benchmarks such as Historical Simulation, GARCH, EWMA, and Extreme Value Theory and state of the art evolving approaches. The results show that ePFM is a potential candidate for VaR modeling, with better performance than alternative approaches.
Resumo:
The recent deregulation in electricity markets worldwide has heightened the importance of risk management in energy markets. Assessing Value-at-Risk (VaR) in electricity markets is arguably more difficult than in traditional financial markets because the distinctive features of the former result in a highly unusual distribution of returns-electricity returns are highly volatile, display seasonalities in both their mean and volatility, exhibit leverage effects and clustering in volatility, and feature extreme levels of skewness and kurtosis. With electricity applications in mind, this paper proposes a model that accommodates autoregression and weekly seasonals in both the conditional mean and conditional volatility of returns, as well as leverage effects via an EGARCH specification. In addition, extreme value theory (EVT) is adopted to explicitly model the tails of the return distribution. Compared to a number of other parametric models and simple historical simulation based approaches, the proposed EVT-based model performs well in forecasting out-of-sample VaR. In addition, statistical tests show that the proposed model provides appropriate interval coverage in both unconditional and, more importantly, conditional contexts. Overall, the results are encouraging in suggesting that the proposed EVT-based model is a useful technique in forecasting VaR in electricity markets. (c) 2005 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
Resumo:
Este documento evalúa el comportamiento de diferentes métodos (paramétrico, no paramétricos y semi-paramétricos) para estimar el VaR (valor en riesgo) de un portafolio representativo para 7 países latinoamericanos. El cálculo del VaR implica la estimación del i-esimo percentil de la distribución del valor futuro del valor de un portafolio. Los resultados no muestran la existencia de un método que se comporte mejor que los demás. Con un nivel de confianza del 95% los modelos paramétricos que emplean el EWMA se desempeñan en general bien así como con el TGARCH, pero estos modelos tienen un comportamiento pobre cuando la significancia considerada es del 1%.