867 resultados para Adenocarcinoma -- metabolism
Resumo:
Barrett's esophagus (BE) is an acquired condition in which the normal lining of the esophagus is replaced by intestinal metaplastic epithelium. BE can evolve to esophageal adenocarcinoma (EAC) through low-grade dysplasia (LGD) and high-grade dysplasia (HGD). The only generally accepted marker for increased risk of EAC is the presence of HGD, diagnosed on endoscopic biopsies. More specific markers for the prediction of EAC risk are needed. A tissue microarray was constructed comprising tissue samples from BE, LGD, HGD, and EAC. Marker expression was studied by immunohistochemistry using antibodies against CD44, DKK1, CDX2, COX2, SOX9, OCT1, E-cadherin, and beta-catenin. Immunostaining was evaluated semi-quantitatively. CD44 expression decreased in HGD and EAC relative to BE and LGD. DKK1 expression increased in HGD and EAC relative to BE and LDG. CDX2 expression increased in HGD but decreased in EAC. COX2 expression decreased in EAC, and SOX9 expression increased only in the upper crypt epithelial cells in HGD. E-cadherin expression decreased in EAC. Nuclear beta-catenin was not significantly different between BE, LGD, and HGD. Loss of CD44 and gain of DKK1 expression characterizes progression from BE and LGD to HGD and EAC, and their altered expression might indicate an increased risk for developing an EAC. This observation warrants inclusion of these immunohistochemically detectable markers in a study with a long patient follow-up.
Resumo:
The photosensitizing properties of m-tetrahydroxyphenylchlorin (mTHPC) and polyethylene glycol-derivatized mTHPC (pegylated mTHPC) were compared in nude mice bearing human malignant mesothelioma, squamous cell carcinoma and adenocarcinoma xenografts. Laser light (20 J/cm2) at 652 nm was delivered to the tumour (surface irradiance) and to an equal-sized area of the hind leg of the animals after i.p. administration of 0.1 mg/kg body weight mTHPC and an equimolar dose of pegylated mTHPC, respectively. The extent of tumour necrosis and normal tissue injury was assessed by histology. Both mTHPC and pegylated mTHPC catalyse photosensitized necrosis in mesothelioma xenografts at drug-light intervals of 1-4 days. The onset of action of pegylated mTHPC seemed slower but significantly exceeds that of mTHPC by days 3 and 4 with the greatest difference being noted at day 4. Pegylated mTHPC also induced significantly larger photonecrosis than mTHPC in squamous cell xenografts but not in adenocarcinoma at day 4, where mTHPC showed greatest activity. The degree of necrosis induced by pegylated mTHPC was the same for all three xenografts. mTHPC led to necrosis of skin and underlying muscle at a drug-light interval of 1 day but minor histological changes only at drug-light intervals from 2-4 days. In contrast, pegylated mTHPC did not result in histologically detectable changes in normal tissues under the same treatment conditions at any drug-light interval assessed. In this study, pegylated mTHPC had advantages as a photosensitizer compared to mTHPC. Tissue concentrations of mTHPC and pegylated mTHPC were measured by high-performance liquid chromatography in non-irradiated animals 4 days after administration. There was no significant difference in tumour uptake between the two sensitizers in mesothelioma, adenocarcinoma and squamous cell carcinoma xenografts. Tissue concentration measurements were of limited use for predicting photosensitization in this model.
Resumo:
Neuroendocrine differentiation has been described in rectal adenocarcinomas receiving neoadjuvant therapy prior to radical surgery, but its clinical relevance is controversial and no data are currently available in colorectal carcinoma metastases as compared to primary tumors. The presence of chromogranin A positive tumor cells was investigated by means of immunohistochemistry on surgical specimens from 54 primary colorectal carcinomas and their corresponding metastases, resected at diagnosis or during tumor progression. In 47 patients, tumor metastases were resected 1 month to 12 years after chemotherapy and/or radiotherapy, while in the remaining seven patients no additional therapy after primary surgery was performed. In primary tumors, neuroendocrine differentiation was found in 12/54 cases (22.2%) as compared to 25/54 metastatic lesions (46.3%; p?=?0.01). The presence of neuroendocrine phenotype was not correlated with any clinical pathological parameter nor with a different proliferation index. However, patients having neuroendocrine cells in the primary tumor had a significantly shorter survival from the time of metastatic spread than those having not (33.3 vs. 55.5 months; p?=?0.04). In summary, our data show that colorectal carcinoma metastases contain a higher percentage of neuroendocrine differentiated cells as compared to their corresponding primaries, a finding possibly related to the influence of chemotherapy in neuroendocrine differentiation during colorectal carcinoma progression.
Resumo:
Background Fatty acid synthase (FASN) is overexpressed and hyperactivated in several human carcinomas, including lung cancer. We characterize and compare the anti-cancer effects of the FASN inhibitors C75 and (−)-epigallocatechin-3-gallate (EGCG) in a lung cancer model. Methods We evaluated in vitro the effects of C75 and EGCG on fatty acid metabolism (FASN and CPT enzymes), cellular proliferation, apoptosis and cell signaling (EGFR, ERK1/2, AKT and mTOR) in human A549 lung carcinoma cells. In vivo, we evaluated their anti-tumour activity and their effect on body weight in a mice model of human adenocarcinoma xenograft. Results C75 and EGCG had comparable effects in blocking FASN activity (96,9% and 89,3% of inhibition, respectively). In contrast, EGCG had either no significant effect in CPT activity, the rate-limiting enzyme of fatty acid β-oxidation, while C75 stimulated CPT up to 130%. Treating lung cancer cells with EGCG or C75 induced apoptosis and affected EGFR-signaling. While EGCG abolished p-EGFR, p-AKT, p-ERK1/2 and p-mTOR, C75 was less active in decreasing the levels of EGFR and p-AKT. In vivo, EGCG and C75 blocked the growth of lung cancer xenografts but C75 treatment, not EGCG, caused a marked animal weight loss. Conclusions In lung cancer, inhibition of FASN using EGCG can be achieved without parallel stimulation of fatty acid oxidation and this effect is related mainly to EGFR signaling pathway. EGCG reduce the growth of adenocarcinoma human lung cancer xenografts without inducing body weight loss. Taken together, EGCG may be a candidate for future pre-clinical development.
Resumo:
Pancreatic ductal adenocarcinoma (PDAC) is expected to become the second leading cause of cancer death by 2030. Current therapeutic options are limited, warranting an urgent need to explore innovative treatment strategies. Due to specific microenvironment constraints including an extensive desmoplastic stroma reaction, PDAC faces major metabolic challenges, principally hypoxia and nutrient deprivation. Their connection with oncogenic alterations such as KRAS mutations has brought metabolic reprogramming to the forefront of PDAC therapeutic research. The Warburg effect, glutamine addiction, and autophagy stand as the most important adaptive metabolic mechanisms of cancer cells themselves, however metabolic reprogramming is also an important feature of the tumor microenvironment, having a major impact on epigenetic reprogramming and tumor cell interactions with its complex stroma. We present a comprehensive overview of the main metabolic adaptations contributing to PDAC development and progression. A review of current and future therapies targeting this range of metabolic pathways is provided.
Resumo:
Lipids can modulate the risk of developing sporadic colorectal adenocarcinoma (SCA), since alterations into lipid metabolism and transport pathways influence directly cholesterol and lipids absorption by colonic cells and indirectly reactive oxygen species (ROS) synthesis in rectum cells due to lipid accumulation. Lipid metabolism is regulated by several proteins APOA1, APOB, APOC3, APOE, CETP, NPY, PON1 and PPARG that could influence both metabolism and transport processes. Is been reported that several common single-nucleotide polymorphisms (SNPs) in these genes could influence their function and/or expression, changing lipid metabolism balance. Thus, genetic changes in those genes can influence SCA development, once the majority of them were never studied in this disease. Furthermore, there are contradictory results between some studied polymorphisms and SCA risk. Thus, the aim of this study was to explore and describe lipid metabolism-associated genes common polymorphisms (APOA1 -75 G>A; APOB R3500Q; APOC3 C3175G, APOC3 T3206G; APOE Cys112/158Arg; CETP G279A, CETP R451Q; NPY Leu7Pro; PON1 Q192R; PPARG Pro12Ala) status among SCA, and their relationship with SCA risk. Genotyping of common lipid metabolism genes polymorphisms (APOA1 75 G>A; APOB R3500Q; APOC3 C3175G, APOC3 T3206G; APOE Cys112/158Arg; CETP G279A, CETP R451Q; NPY Leu7Pro; PON1 Q192R; PPARG Pro12Ala) were done by PCR-SSP techniques, from formalin-fixed and paraffin-embedded biopsies of 100 healthy individuals and 68 SCA subjects. Mutant genotypes of APOA1 -75AA (32% vs 12%; p=0.001; OR=3.51; 95% CI 1.59-7.72); APOB 3500AA (7% vs 0%; p=0.01); APOC3 3175GG (19% vs 2%; p=0.0002; OR=11.58; 95% CI 2.52-53.22), APOC3 3206GG (19% vs 0%; p<0.0001); CETP 279AA (12% vs 1%; p=0.003; OR=13.20; 95% CI 1.61-108.17), CETP 451AA (16% vs 0%; p<0.0001); NPY 7CC (15% vs 0%; p<0.0001); PPARG 12GG (10% vs 0%; p=0.001); and heterozygote genotype PON1 192AG (56% vs 22%; p<0.0001; OR=4.49; 95% CI 2.298.80) were found associated with SCA prevalence. While, APOE E4/E4 (0% vs 8%; p=0.02) mutant haplotype seemed to have a protective effect on SCA. Moreover, it also been founded differences between APOB 3500GA, APOC3 3206TG, CETP 279AA genotypes and PPARG 12Ala allele prevalence and tissue localization (colon vs rectum). These findings suggest a positive association between most of common lipid metabolism genes polymorphisms studied and SCA prevalence. Dysregulation of APOA1, APOB, APOC3, CETP, NPY, PON1 and PPARG genes could be associated with lower cholesterol plasma levels and increase ROS among colon and rectum mucosa. Furthermore, these results also support the hypothesis that CRC is related with intestinal lipid absorption decrease and secondary bile acids production increase. Moreover, the polymorphisms studied may play an important role as biomarkers to SCA susceptibility.
Resumo:
Lipids can modulate the risk of developing sporadic colorectal adenocarcinoma (SCA), since alterations into lipid metabolism and transport pathways influence directly cholesterol and lipids absorption by colonic cells and indirectly reactive oxygen species (ROS) synthesis in rectum cells due to lipid accumulation. Lipid metabolism is regulated by several proteins APOA1, APOB, APOC3, APOE, CETP, NPY, PON1 and PPARG that could influence both metabolism and transport processes. Is been reported that several common single-nucleotide polymorphisms (SNPs) in these genes could influence their function and/or expression, changing lipid metabolism balance. Thus, genetic changes in those genes can influence SCA development, once the majority of them were never studied in this disease. Furthermore, there are contradictory results between some studied polymorphisms and SCA risk. Thus, the aim of this study was to explore and describe lipid metabolism-associated genes common polymorphisms (APOA1 -75 G>A; APOB R3500Q; APOC3 C3175G, APOC3 T3206G; APOE Cys112/158Arg; CETP G279A, CETP R451Q; NPY Leu7Pro; PON1 Q192R; PPARG Pro12Ala) status among SCA, and their relationship with SCA risk. Genotyping of common lipid metabolism genes polymorphisms (APOA1 75 G>A; APOB R3500Q; APOC3 C3175G, APOC3 T3206G; APOE Cys112/158Arg; CETP G279A, CETP R451Q; NPY Leu7Pro; PON1 Q192R; PPARG Pro12Ala) were done by PCR-SSP techniques, from formalin-fixed and paraffin-embedded biopsies of 100 healthy individuals and 68 SCA subjects. Mutant genotypes of APOA1 -75AA (32% vs 12%; p=0.001; OR=3.51; 95% CI 1.59-7.72); APOB 3500AA (7% vs 0%; p=0.01); APOC3 3175GG (19% vs 2%; p=0.0002; OR=11.58; 95% CI 2.52-53.22), APOC3 3206GG (19% vs 0%; p<0.0001); CETP 279AA (12% vs 1%; p=0.003; OR=13.20; 95% CI 1.61-108.17), CETP 451AA (16% vs 0%; p<0.0001); NPY 7CC (15% vs 0%; p<0.0001); PPARG 12GG (10% vs 0%; p=0.001); and heterozygote genotype PON1 192AG (56% vs 22%; p<0.0001; OR=4.49; 95% CI 2.298.80) were found associated with SCA prevalence. While, APOE E4/E4 (0% vs 8%; p=0.02) mutant haplotype seemed to have a protective effect on SCA. Moreover, it also been founded differences between APOB 3500GA, APOC3 3206TG, CETP 279AA genotypes and PPARG 12Ala allele prevalence and tissue localization (colon vs rectum). These findings suggest a positive association between most of common lipid metabolism genes polymorphisms studied and SCA prevalence. Dysregulation of APOA1, APOB, APOC3, CETP, NPY, PON1 and PPARG genes could be associated with lower cholesterol plasma levels and increase ROS among colon and rectum mucosa. Furthermore, these results also support the hypothesis that CRC is related with intestinal lipid absorption decrease and secondary bile acids production increase. Moreover, the polymorphisms studied may play an important role as biomarkers to SCA susceptibility.
Resumo:
The aim of the present study was to examine the impact of polymorphisms in prostate-specific antigen (PSA) and androgen-related genes (AR, CYP17, and CYP19) on prostate cancer (PCa) risk in selected high-risk patients who underwent prostate biopsy. Blood samples and prostate tissues were obtained for DNA analysis. Single-nucleotide polymorphisms in the 50-untranslated regions (UTRs) of the PSA (substitution A > G at position -158) and CYP17 (substitution T > C at 50-UTR) genes were detected by polymerase chain reaction (PCR)-restriction fragment length polymorphism assays. The CAG and TTTA repeats in the AR and CYP19 genes, respectively, were genotyped by PCR-based GeneScan analysis. Patients with the GG genotype of the PSA gene had a higher risk of PCa than those with the AG or AA genotype (OR = 3.79, p = 0.00138). The AA genotype was associated with lower PSA levels (6.44 +/- 1.64 ng/mL) compared with genotypes having at least one G allele (10.44 +/- 10.06 ng/mL) (p = 0.0687, 95% CI - 0.3146 to 8.315, unpaired t-test). The multivariate analysis confirmed the association between PSA levels and PSA genotypes (AA vs. AG+GG; chi(2) = 0.0482) and CYP19 (short alleles homozygous vs. at least one long allele; chi(2) = 0.0110) genotypes. Genetic instability at the AR locus leading to somatic mosaicism was detected in one PCa patient by comparing the length of AR CAG repeats in matched peripheral blood and prostate biopsy cores. Taken together, these findings suggest that the PSA genotype should be a clinically relevant biomarker to predict the PCa risk.
Resumo:
The aim of present study was to verify the in vitro antitumor activity of a ruthenium complex, cis-(dichloro)tetraammineruthenium(III) chloride (cis-[RuCl(2)(NH(3))(4)]Cl) toward different tumor cell lines. The antitumor studies showed that ruthenium(III) complex presents a relevant cytotoxic activity against murine B cell lymphoma (A-20), murine ascitic sarcoma 180 (S-180), human breast adenocarcinoma (SK-BR-3), and human T cell leukemia (Jurkat) cell lines and a very low cytotoxicity toward human peripheral blood mononuclear cells. The ruthenium(III) complex decreased the fraction of tumor cells in G0/G1 and/or G2-M phases, indicating that this compound may act on resting/early entering G0/G1 cells and/or precycling G2-M cells. The cytotoxic activity of a high concentration (2 mg mL(-1)) of cis-[RuCl(2)(NH(3))(4)]Cl toward Jurkat cells correlated with an increased number of annexin V-positive cells and also the presence of DNA fragmentation, suggesting that this compound induces apoptosis in tumor cells. The development of new antineoplastic medications demands adequate knowledge in order to avoid inefficient or toxic treatments. Thus, a mechanistic understanding of how metal complexes achieve their activities is crucial to their clinical success and to the rational design of new compounds with improved potency.
Resumo:
Reprogramming energy metabolism and inducing angiogenesis: co-expression of monocarboxylate transporters with VEGF family members in cervical adenocarcinomas.
Resumo:
The effect of cancer cachexia on protein metabolism has been studied in mice transplanted with the MAC16 adenocarcinoma. The progressive cachexia induced by the MAC16 tumour was characterised by a reduction in carcass nitrogen between 16-30% weight loss and a reciprocal increase in tumour nitrogen content. Carcass nitrogen loss was accompanied by a concomitant decrease in gastrocnemius muscle weight and nitrogen content and also by a decrease in liver nitrogen content. The loss of gastrocnemius muscle throughout the progression of cachexia was attributable to a 60% decrease in the rate of protein synthesis and a 240% increase in the rate of protein degradation. The loss of skeletal muscle protein that may be partially mediated by an increased rate of protein degradation has been correlated with a circulatory catabolic factor present only in cachectic tumour-bearing animals, that degrades host muscle in vitro. The proteolysis-inducing factor was found to be heat stable, not a serine protease and was inhibited by indomethacin and eicosapentaenoic acid (EPA) in a dose-related manner. The proteolytic factor induced prostaglandin E2 formation in the gastrocnemius muscle of non tumour-bearing animals and this effect was inhibited by indomethacin and EPA. In vivo studies show EPA (2.0g/kg-1 by gavage) to effectively reverse the decrease in body weight in animals bearing the MAC16 tumour with a concomitant reduction in tumour growth. Muscle from animals treated with EPA showed a decrease (60%) in protein degradation without an effect on protein synthesis. In vivo studies show branched chain amino acid treatment to be ineffective in moderating the cachectic effect of the MAC16 tumour. The action of the factor was largely mimicked by triarachidonin and trilinoleia. The increased serum levels of arachidonic acid in cachectic tumour-bearing animals may thus be responsible for increased protein degradation through prostanoid metabolism. The understanding of protein metabolism and catabolic factors in the cachectic animal may provide future avenues for the reversal of cachexia and the treatment of cancer.metabolism and catabolicmetabolism and cat
Resumo:
The abnormalities of lipid metabolism observed in cancer cachexia may be induced by a lipid-mobilizing factor produced by adenocarcinomas. The specific molecules and metabolic pathways that mediate the actions of lipid-mobilizing factor are not known. The mitochondrial uncoupling proteins-1, -2 and -3 are suggested to play essential roles in energy dissipation and disposal of excess lipid. Here, we studied the effects of lipid-mobilizing factor on the expression of uncoupling proteins-1, -2 and -3 in normal mice. Lipid-mobilizing factor isolated from the urine of cancer patients was injected intravenously into mice over a 52-h period, while vehicle was similarly given to controls. Lipid-mobilizing factor caused significant reductions in body weight (-10%, P=0.03) and fat mass (-20%, P<0.01) accompanied by a marked decrease in plasma leptin (-59%, P<0.01) and heavy lipid deposition in the liver. In brown adipose tissue, uncoupling protein-1 mRNA levels were elevated in lipid-mobilizing factor-treated mice (+96%, P<0.01), as were uncoupling proteins-2 and -3 (+57% and +37%, both P<0.05). Lipid-mobilizing factor increased uncoupling protein-2 mRNA in both skeletal muscle (+146%, P<0.05) and liver (+142%, P=0.03). The protein levels of uncoupling protein-1 in brown adipose tissue and uncoupling protein-2 in liver were also increased with lipid-mobilizing factor administration (+49% and +67%, both P=0.02). Upregulation by lipid-mobilizing factor of uncoupling proteins-1, -2 and -3 in brown adipose tissue, and of uncoupling protein-2 in skeletal muscle and liver, suggests that these uncoupling proteins may serve to utilize excess lipid mobilized during fat catabolism in cancer cachexia.
Resumo:
Esophageal adenocarcinoma (EAC) is a severe cancer that has been on the rise in Western nations over the past few decades. It has a high mortality rate and the 5-year survival rate is only 35%–45%. EAC has been included in a group of tumors with one of the highest rates of copy number alterations (CNAs), somatic structural rearrangements, high mutation frequency, with different mutational signatures, and with epigenetic mechanisms. The vast heterogeneity of EAC mutations makes it challenging to comprehend the biology that underlies tumor onset and development, identify prognostic biomarkers, and define a molecular classification to stratify patients. The only way to resolve the current disagreements is through an exhaustive molecular analysis of EAC. We examined the genetic profile of 164 patients' esophageal adenocarcinoma samples (without chemo-radiotherapy). The included patients did not receive neoadjuvant therapies, which can change the genetic and molecular composition of the tumor. Using next-generation sequencing technologies (NGS) at high coverage, we examined a custom panel of 26 cancer-related genes. Over the entire cohort, 337 variants were found, with the TP53 gene showing the most frequent alteration (67.27%). Poorer cancer-specific survival was associated with missense mutations in the TP53 gene (Log Rank P=0.0197). We discovered HNF1alpha gene disruptive mutations in 7 cases that were also affected by other gene changes. We started to investigate its role in EAC cell lines by silencing HNF1alpha to mimic our EAC cohort and we use Seahorse technique to analyze its role in the metabolism in esophageal cell. No significant changes were found in transfected cell lines. We conclude by finding that a particular class of TP53 mutations (missense changes) adversely impacted cancer-specific survival in EAC. HNF1alpha, a new EAC-mutated gene, was found, but more research is required to fully understand its function as a tumor suppressor gene.
Resumo:
Medullary thyroid carcinoma (MTC) originates in the thyroid parafollicular cells and represents 3-4% of the malignant neoplasms that affect this gland. Approximately 25% of these cases are hereditary due to activating mutations in the REarranged during Transfection (RET) proto-oncogene. The course of MTC is indolent, and survival rates depend on the tumor stage at diagnosis. The present article describes clinical evidence-based guidelines for the diagnosis, treatment, and follow-up of MTC. The aim of the consensus described herein, which was elaborated by Brazilian experts and sponsored by the Thyroid Department of the Brazilian Society of Endocrinology and Metabolism, was to discuss the diagnosis, treatment, and follow-up of individuals with MTC in accordance with the latest evidence reported in the literature. After clinical questions were elaborated, the available literature was initially surveyed for evidence in the MedLine-PubMed database, followed by the Embase and Scientific Electronic Library Online/Latin American and Caribbean Health Science Literature (SciELO/Lilacs) databases. The strength of evidence was assessed according to the Oxford classification of evidence levels, which is based on study design, and the best evidence available for each question was selected. Eleven questions corresponded to MTC diagnosis, 8 corresponded to its surgical treatment, and 13 corresponded to follow-up, for a total of 32 recommendations. The present article discusses the clinical and molecular diagnosis, initial surgical treatment, and postoperative management of MTC, as well as the therapeutic options for metastatic disease. MTC should be suspected in individuals who present with thyroid nodules and family histories of MTC, associations with pheochromocytoma and hyperparathyroidism, and/or typical phenotypic characteristics such as ganglioneuromatosis and Marfanoid habitus. Fine-needle nodule aspiration, serum calcitonin measurements, and anatomical-pathological examinations are useful for diagnostic confirmation. Surgery represents the only curative therapeutic strategy. The therapeutic options for metastatic disease remain limited and are restricted to disease control. Judicious postoperative assessments that focus on the identification of residual or recurrent disease are of paramount importance when defining the follow-up and later therapeutic management strategies.