848 resultados para Adaptive pulsed
Resumo:
In ship and offshore terminal construction, welded cross sections are thick and the number of welds very high. Consequently, there are two aspects of great importance; cost and heat input. Reduction in the welding operation time decreases the costs of the work force and avoids excessive heat, preventing distortion and other weld defects. The need to increase productivity while using a single wire in the GMAW process has led to the use of a high current and voltage to improve the melting rate. Unfortunately, this also increases the heat input. Innovative GMAW processes, mostly implemented for sheet plate sections, have shown significant reduction in heat input (Q), low distortion and increase in welding speed. The aim of this study is to investigate adaptive pulsed GMAW processes and assess relevant applications in the high power range, considering possible benefits when welding thicker sections and high yield strength steel. The study experimentally tests the usability of adaptive welding processes and evaluates their effects on weld properties, penetration and shapes of the weld bead.The study first briefly reviews adaptive GMAW to evaluate different approaches and their applications and to identify benefits in adaptive pulsed. Experiments are then performed using Synergic Pulsed GMAW, WiseFusionTM and Synergic GMAW processes to weld a T-joint in a horizontal position (PB). The air gap between the parts ranges from 0 to 2.5 mm. The base materials are structural steel grade S355MC and filler material G3Si1. The experiment investigates heat input, mechanical properties and microstructure of the welded joint. Analysis of the literature reveals that different approaches have been suggested using advanced digital power sources with accurate waveform, current, voltage, and feedback control. In addition, studies have clearly indicated the efficiency of lower energy welding processes. Interest in the high power range is growing and a number of different approaches have been suggested. The welding experiments in this study reveal a significant reduction of heat input and a weld microstructure with the presence of acicular ferrite (AF) beneficial for resistance to crack propagation. The WiseFusion bead had higher dilution, due to the weld bead shape, and low defects. Adaptive pulse GMAW processes can be a favoured choice when welding structures with many welded joints. The total heat reduction mitigates residual stresses and the bead shape allows a higher amperage limit. The stability of the arc during the process is virtually spatter free and allows an increase in welding speed.
Resumo:
The Apical Membrane Antigen-1 (AMA-1) is a well-characterized and functionally important merozoite protein and is currently considered a major candidate antigen for a malaria vaccine. Previously, we showed that AMA-1 has an influence on cellular immune responses of malaria-naive subjects, resulting in an alternative activation of monocyte-derived dendritic cells and induction of a pro-inflammatory response by stimulated PBMCs. Although there is evidence, from human and animal malaria model systems that cell-mediated immunity may contribute to both protection and pathogenesis, the knowledge on cellular immune responses in vivax malaria and the factors that may regulate this immunity are poorly understood. In the current work, we describe the maturation of monocyte-derived dendritic cells of P. vivax naturally infected individuals and the effect of P. vivax vaccine candidate Pv-AMA-1 on the immune responses of the same donors. We show that malaria-infected subjects present modulation of DC maturation, demonstrated by a significant decrease in expression of antigen-presenting molecules (CD1a, HLA-ABC and HLA-DR), accessory molecules (CD40, CD80 and CD86) and Fc gamma RI (CD64) receptor (P <= 0.05). Furthermore, Pv-AMA-1 elicits an upregulation of CD1a and HLA-DR molecules on the surface of monocyte-derived dendritic cells (P=0.0356 and P=0.0196, respectively), and it is presented by AMA-1-stimulated DCs. A significant pro-inflammatory response elicited by Pv-AMA-1-pulsed PBMCs is also demonstrated, as determined by significant production of TNF-alpha, IL-12p40 and IFN-gamma (P <= 0.05). Our results suggest that Pv-AMA-1 may partially revert DC down-modulation observed in infected subjects, and exert an important role in the initiation of pro-inflammatory immunity that might contribute substantially to protection. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Despite the wide acceptance that glycans are centrally implicated in immunity, exactly how they contribute to the tilt immune response remains poorly defined. In this study, we sought to evaluate the impact of the malignant phenotype-associated glycan, sialyl-Tn (STn) in the function of the key orchestrators of the immune response, the dendritic cells (DCs). In high grade bladder cancer tissue, the STn antigen is significantly overexpressed and correlated with the increased expression of ST6GALNAC1 sialyltransferase. Bladder cancer tissue presenting elevated expression of ST6GALNAC1 showed a correlation with increased expression of CD1a, a marker for bladder immature DCs and showed concomitant low levels of Th1-inducing cytokines IL-12 and TNF-α. In vitro, human DCs co-incubated with STn+ bladder cancer cells, had an immature phenotype (MHC-IIlow, CD80low and CD86low) and were unresponsive to further maturation stimuli. When contacting with STn+ cancer cells, DCs expressed significantly less IL-12 and TNF-α. Consistent with a tolerogenic DC profile, T cells that were primed by DCs pulsed with antigens derived from STn+ cancer cells were not activated and showed a FoxP3high IFN-γlow phenotype. Blockade of STn antigens and of STn+ glycoprotein, CD44 and MUC1, in STn+ cancer cells was able to lower the induction of tolerance and DCs become more mature. Overall, our data suggest that STn-expressing cancer cells impair DC maturation and endow DCs with a tolerogenic function, limiting their capacity to trigger protective anti-tumour T cell responses. STn antigens and, in particular, STn+ glycoproteins are potential targets for circumventing tumour-induced tolerogenic mechanisms.
Resumo:
In this paper, space adaptivity is introduced to control the error in the numerical solution of hyperbolic systems of conservation laws. The reference numerical scheme is a new version of the discontinuous Galerkin method, which uses an implicit diffusive term in the direction of the streamlines, for stability purposes. The decision whether to refine or to unrefine the grid in a certain location is taken according to the magnitude of wavelet coefficients, which are indicators of local smoothness of the numerical solution. Numerical solutions of the nonlinear Euler equations illustrate the efficiency of the method. © Springer 2005.
Resumo:
Left ventricular diastolic dysfunction plays an important role on heart failure progression. In order to obtain additional reference values of left ventricular diastolic parameters and investigate influence of common variables, peak E wave (peak E), peak A wave (peak A), E/A ratio (E/A), E wave deceleration time (EDT) and isovolumic relaxation time (IRVT) were studied in 40 clinically healthy dogs, by pulsed wave Doppler. The following values were obtained: peak E = 0.747 ± 0.117 m/s, peak A = 0.487 ± 0.062 m/s, E/A = 1.533 ± 0.198, EDT = 88.7 ± 9.2 ms and IRVT = 0.080 ± 0.009 s. Some parameters were influenced by heart rate (peak E, peak A and IRVT), by age (peak A and E/A) and by body weight (TRIV). Gender influence was absent. Values obtained can be used as reference for canine specimens but its interpretation should consider on the influence of related variables.
Resumo:
Nucleoside hydrolases (NHs) show homology among parasite protozoa, fungi and bacteria. They are vital protagonists in the establishment of early infection and, therefore, are excellent candidates for the pathogen recognition by adaptive immune responses. Immune protection against NHs would prevent disease at the early infection of several pathogens. We have identified the domain of the NH of L. donovani (NH36) responsible for its immunogenicity and protective efficacy against murine visceral leishmaniasis (VL). Using recombinant generated peptides covering the whole NH36 sequence and saponin we demonstrate that protection against L. chagasi is related to its C-terminal domain (amino-acids 199-314) and is mediated mainly by a CD4+ T cell driven response with a lower contribution of CD8+ T cells. Immunization with this peptide exceeds in 36.73 +/- 12.33% the protective response induced by the cognate NH36 protein. Increases in IgM, IgG2a, IgG1 and IgG2b antibodies, CD4+ T cell proportions, IFN-gamma secretion, ratios of IFN-gamma/IL-10 producing CD4+ and CD8+ T cells and percents of antibody binding inhibition by synthetic predicted epitopes were detected in F3 vaccinated mice. The increases in DTH and in ratios of TNF alpha/IL-10 CD4+ producing cells were however the strong correlates of protection which was confirmed by in vivo depletion with monoclonal antibodies, algorithm predicted CD4 and CD8 epitopes and a pronounced decrease in parasite load (90.5-88.23%; p = 0.011) that was long-lasting. No decrease in parasite load was detected after vaccination with the N-domain of NH36, in spite of the induction of IFN-gamma/IL-10 expression by CD4+ T cells after challenge. Both peptides reduced the size of footpad lesions, but only the C-domain reduced the parasite load of mice challenged with L. amazonensis. The identification of the target of the immune response to NH36 represents a basis for the rationale development of a bivalent vaccine against leishmaniasis and for multivalent vaccines against NHs-dependent pathogens.
Resumo:
Laminar and pulsed flows typical of multi-commuted and multi-pumping flow systems, were evaluated in relation to analytical procedures carried out at high temperatures. As application, the spectrophotometric determination of total reducing sugars (TRS, hydrolyzed sucrose plus reducing sugars) in sugar-cane juice and molasses was selected. The method involves in-line hydrolysis of sucrose and alkaline degradation of the reducing sugars at about 98 degrees C. Better results were obtained with pulsed flows, due to the efficient radial mass transport inherent to the multi-pumping flow system. The proposed system presents favorable characteristics of ruggedness, analytical precision (r.s.d. < 0.013 for typical samples), stability (no measurable baseline drift during 4-h working periods), linearity of the analytical curve (r > 0.992, n = 5, 0.05-0.50% w/v TRS) and sampling rate (65 h(-1)). Results are in agreement with ion chromatography.
Resumo:
An improved flow-based procedure is proposed for turbidimetric sulphate determination in waters. The flow system was designed with solenoid micro-pumps in order to improve mixing conditions and minimize reagent consumption as well as waste generation. Stable baselines were observed in view of the pulsed flow characteristic of the systems designed with solenoid micro-pumps, thus making the use of washing solutions unnecessary. The nucleation process was improved by stopping the flow prior to the measurement, thus avoiding the need of sulphate addition. When a 1-cm optical path flow cell was employed, linear response was achieved within 20-200 mg L(-1), described by the equation S = -0.0767 + 0.00438C (mg L(-1)), r = 0.999. The detection limit was estimated as 3 mg L(-1) at the 99.7% confidence level and the coefficient of variation was 2.4% (n = 20). The sampling rate was estimated as 33 determinations per hour. A long pathlength (100-cm) flow cell based on a liquid core waveguide was exploited to increase sensitivity in turbidimetry. Baseline drifts were avoided by a periodical washing step with EDTA in alkaline medium. Linear response was observed within 7-16 mg L(-1), described by the equation S = -0.865 + 0.132C (mg L(-1)), r = 0.999. The detection limit was estimated as 150 mu g L(-1) at the 99.7% confidence level and the coefficient of variation was 3.0% (n = 20). The sampling rate was estimated as 25 determinations per hour. The results obtained for freshwater and rain water samples were in agreement with those achieved by batch turbidimetry at the 95% confidence level. (C) 2008 Elsevier B.V All rights reserved.
Resumo:
Various molecular systems are available for epidemiological, genetic, evolutionary, taxonomic and systematic studies of innumerable fungal infections, especially those caused by the opportunistic pathogen C. albicans. A total of 75 independent oral isolates were selected in order to compare Multilocus Enzyme Electrophoresis (MLEE), Electrophoretic Karyotyping (EK) and Microsatellite Markers (Simple Sequence Repeats - SSRs), in their abilities to differentiate and group C. albicans isolates (discriminatory power), and also, to evaluate the concordance and similarity of the groups of strains determined by cluster analysis for each fingerprinting method. Isoenzyme typing was performed using eleven enzyme systems: Adh, Sdh, M1p, Mdh, Idh, Gdh, G6pdh, Asd, Cat, Po, and Lap (data previously published). The EK method consisted of chromosomal DNA separation by pulsed-field gel electrophoresis using a CHEF system. The microsatellite markers were investigated by PCR using three polymorphic loci: EF3, CDC3, and HIS3. Dendrograms were generated by the SAHN method and UPGMA algorithm based on similarity matrices (S(SM)). The discriminatory power of the three methods was over 95%, however a paired analysis among them showed a parity of 19.7-22.4% in the identification of strains. Weak correlation was also observed among the genetic similarity matrices (S(SM)(MLEE) x S(SM)(EK) x S(SM)(SSRs)). Clustering analyses showed a mean of 9 +/- 12.4 isolates per cluster (3.8 +/- 8 isolates/taxon) for MLEE, 6.2 +/- 4.9 isolates per cluster (4 +/- 4.5 isolates/taxon) for SSRs, and 4.1 +/- 2.3 isolates per cluster (2.6 +/- 2.3 isolates/taxon) for EK. A total of 45 (13%), 39(11.2%), 5 (1.4%) and 3 (0.9%) clusters pairs from 347 showed similarity (Si) of 0.1-10%, 10.1-20%, 20.1-30% and 30.1-40%, respectively. Clinical and molecular epidemiological correlation involving the opportunistic pathogen C. albicans may be attributed dependently of each method of genotyping (i.e., MLEE, EK, and SSRs) supplemented with similarity and grouping analysis. Therefore, the use of genotyping systems that give results which offer minimum disparity, or the combination of the results of these systems, can provide greater security and consistency in the determination of strains and their genetic relationships. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The present study investigated the effects of 8 week of resistance training (RT) on hemodynamic and ventricular function on cardiac myosin ATPase activity, and on contractility of papillary muscles of rats. Groups: control (CO), electrically stimulated (ES), trained at 60% (TR 60%) and 75% of one repetition maximum (1RM) (TR 75%). Exercise protocol: 5 sets of 12 repetitions at 60 and 75% of 1RM, 5 times per week. The CO and ES groups had similar values for parameters analyzed (P > 0.05). Blood pressure (BP), heart rate (13%), left ventricle systolic pressure (LVSP 13%) decreased and cardiac myosin ATPase activity increased in the TR 75% group (90%, P < 0.05). The contractile performance of papillary muscles increased in trained rats (P < 0.05). Eight weeks of RT was associated with lowering of resting BP, heart rate and LVSP, improvements in contractility of the papillary muscle and an increase of cardiac myosin ATPase activity in rats.
Resumo:
The adaptive process in motor learning was examined in terms of effects of varying amounts of constant practice performed before random practice. Participants pressed five response keys sequentially, the last one coincident with the lighting of a final visual stimulus provided by a complex coincident timing apparatus. Different visual stimulus speeds were used during the random practice. 33 children (M age=11.6 yr.) were randomly assigned to one of three experimental groups: constant-random, constant-random 33%, and constant-random 66%. The constant-random group practiced constantly until they reached a criterion of performance stabilization three consecutive trials within 50 msec. of error. The other two groups had additional constant practice of 33 and 66%, respectively, of the number of trials needed to achieve the stabilization criterion. All three groups performed 36 trials under random practice; in the adaptation phase, they practiced at a different visual stimulus speed adopted in the stabilization phase. Global performance measures were absolute, constant, and variable errors, and movement pattern was analyzed by relative timing and overall movement time. There was no group difference in relation to global performance measures and overall movement time. However, differences between the groups were observed on movement pattern, since constant-random 66% group changed its relative timing performance in the adaptation phase.
Resumo:
The aim of this study was to measure the temporal expression of osteogenic genes during the process of bone healing in low-intensity pulsed ultrasound (LIPUS) treated bone defects by means of histopathologic and real-time polymerase chain reaction (PCR) analysis. Animals were randomly distributed into two groups (n = 30): control group (bone defect without treatment) and LIPUS treated (bone defect treated with LIPUS). On days 7, 13 and 25 postinjury, 10 rats per group were sacrificed. Rats were treated with a 30 mW/cm(2) LIPUS. The results pointed out intense new bone formation surrounded by highly vascularized connective tissue presenting a slight osteogenic activity, with primary bone deposition was observed in the group exposed to LIPUS in the intermediary (13 days) and late stages of repair (25 days) in the treated animals. In addition, quantitative real-time polymerase chain reaction (RT-qPCR) showed an upregulation of bone morphogenetic protein 4 (BMP4), osteocalcin and Runx2 genes 7 days after the surgery. In the intermediary period, there was no increase in the expression. The expression of alkaline phosphatase, BMP4 and Runx2 was significantly increased at the last period. Our results indicate that LIPUS therapy improves bone repair in rats and upregulated osteogenic genes, mainly at the late stages of recovery. (E-mail: a.renno@unifesp.br) (C) 2010 Published by Elsevier Inc. on behalf of World Federation for Ultrasound in Medicine & Biology.
Resumo:
This paper presents a novel adaptive control scheme. with improved convergence rate, for the equalization of harmonic disturbances such as engine noise. First, modifications for improving convergence speed of the standard filtered-X LMS control are described. Equalization capabilities are then implemented, allowing the independent tuning of harmonics. Eventually, by providing the desired order vs. engine speed profiles, the pursued sound quality attributes can be achieved. The proposed control scheme is first demonstrated with a simple secondary path model and, then, experimentally validated with the aid of a vehicle mockup which is excited with engine noise. The engine excitation is provided by a real-time sound quality equivalent engine simulator. Stationary and transient engine excitations are used to assess the control performance. The results reveal that the proposed controller is capable of large order-level reductions (up to 30 dB) for stationary excitation, which allows a comfortable margin for equalization. The same holds for slow run-ups ( > 15s) thanks to the improved convergence rate. This margin, however, gets narrower with shorter run-ups (<= 10s). (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This work presents a critical analysis of methodologies to evaluate the effective (or generalized) electromechanical coupling coefficient (EMCC) for structures with piezoelectric elements. First, a review of several existing methodologies to evaluate material and effective EMCC is presented. To illustrate the methodologies, a comparison is made between numerical, analytical and experimental results for two simple structures: a cantilever beam with bonded extension piezoelectric patches and a simply-supported sandwich beam with an embedded shear piezoceramic. An analysis of the electric charge cancelation effect on the effective EMCC observed in long piezoelectric patches is performed. It confirms the importance of reinforcing the electrodes equipotentiality condition in the finite element model. Its results indicate also that smaller (segmented) and independent piezoelectric patches could be more interesting for energy conversion efficiency. Then, parametric analyses and optimization are performed for a cantilever sandwich beam with several embedded shear piezoceramic patches. Results indicate that to fully benefit from the higher material coupling of shear piezoceramic patches, attention must be paid to the configuration design so that the shear strains in the patches are maximized. In particular, effective square EMCC values higher than 1% were obtained embedding nine well-spaced short piezoceramic patches in an aluminum/foam/aluminum sandwich beam.
Resumo:
This paper aims to formulate and investigate the application of various nonlinear H(infinity) control methods to a fiee-floating space manipulator subject to parametric uncertainties and external disturbances. From a tutorial perspective, a model-based approach and adaptive procedures based on linear parametrization, neural networks and fuzzy systems are covered by this work. A comparative study is conducted based on experimental implementations performed with an actual underactuated fixed-base planar manipulator which is, following the DEM concept, dynamically equivalent to a free-floating space manipulator. (C) 2011 Elsevier Ltd. All rights reserved.