747 resultados para Adaptive clustering
Resumo:
This paper proposes an adaptive algorithm for clustering cumulative probability distribution functions (c.p.d.f.) of a continuous random variable, observed in different populations, into the minimum homogeneous clusters, making no parametric assumptions about the c.p.d.f.’s. The distance function for clustering c.p.d.f.’s that is proposed is based on the Kolmogorov–Smirnov two sample statistic. This test is able to detect differences in position, dispersion or shape of the c.p.d.f.’s. In our context, this statistic allows us to cluster the recorded data with a homogeneity criterion based on the whole distribution of each data set, and to decide whether it is necessary to add more clusters or not. In this sense, the proposed algorithm is adaptive as it automatically increases the number of clusters only as necessary; therefore, there is no need to fix in advance the number of clusters. The output of the algorithm are the common c.p.d.f. of all observed data in the cluster (the centroid) and, for each cluster, the Kolmogorov–Smirnov statistic between the centroid and the most distant c.p.d.f. The proposed algorithm has been used for a large data set of solar global irradiation spectra distributions. The results obtained enable to reduce all the information of more than 270,000 c.p.d.f.’s in only 6 different clusters that correspond to 6 different c.p.d.f.’s.
Resumo:
Genetically engineered bioreporters are an excellent complement to traditional methods of chemical analysis. The application of fluorescence flow cytometry to detection of bioreporter response enables rapid and efficient characterization of bacterial bioreporter population response on a single-cell basis. In the present study, intrapopulation response variability was used to obtain higher analytical sensitivity and precision. We have analyzed flow cytometric data for an arsenic-sensitive bacterial bioreporter using an artificial neural network-based adaptive clustering approach (a single-layer perceptron model). Results for this approach are far superior to other methods that we have applied to this fluorescent bioreporter (e.g., the arsenic detection limit is 0.01 microM, substantially lower than for other detection methods/algorithms). The approach is highly efficient computationally and can be implemented on a real-time basis, thus having potential for future development of high-throughput screening applications.
Resumo:
O avanço nas áreas de comunicação sem fio e microeletrônica permite o desenvolvimento de equipamentos micro sensores com capacidade de monitorar grandes regiões. Formadas por milhares de nós sensores, trabalhando de forma colaborativa, as Redes de Sensores sem Fio apresentam severas restrições de energia, devido à capacidade limitada das baterias dos nós que compõem a rede. O consumo de energia pode ser minimizado, permitindo que apenas alguns nós especiais, chamados de Cluster Head, sejam responsáveis por receber os dados dos nós que formam seu cluster e propagar estes dados para um ponto de coleta denominado Estação Base. A escolha do Cluster Head ideal influencia no aumento do período de estabilidade da rede, maximizando seu tempo de vida útil. A proposta, apresentada nesta dissertação, utiliza Lógica Fuzzy e algoritmo k-means com base em informações centralizadas na Estação Base para eleição do Cluster Head ideal em Redes de Sensores sem Fio heterogêneas. Os critérios usados para seleção do Cluster Head são baseados na centralidade do nó, nível de energia e proximidade para a Estação Base. Esta dissertação apresenta as desvantagens de utilização de informações locais para eleição do líder do cluster e a importância do tratamento discriminatório sobre as discrepâncias energéticas dos nós que formam a rede. Esta proposta é comparada com os algoritmos Low Energy Adaptative Clustering Hierarchy (LEACH) e Distributed energy-efficient clustering algorithm for heterogeneous Wireless sensor networks (DEEC). Esta comparação é feita, utilizando o final do período de estabilidade, como também, o tempo de vida útil da rede.
Resumo:
For smart applications, nodes in wireless multimedia sensor networks (MWSNs) have to take decisions based on sensed scalar physical measurements. A routing protocol must provide the multimedia delivery with quality level support and be energy-efficient for large-scale networks. With this goal in mind, this paper proposes a smart Multi-hop hierarchical routing protocol for Efficient VIdeo communication (MEVI). MEVI combines an opportunistic scheme to create clusters, a cross-layer solution to select routes based on network conditions, and a smart solution to trigger multimedia transmission according to sensed data. Simulations were conducted to show the benefits of MEVI compared with the well-known Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol. This paper includes an analysis of the signaling overhead, energy-efficiency, and video quality.
Resumo:
In recent years, vehicular cloud computing (VCC) has emerged as a new technology which is being used in wide range of applications in the area of multimedia-based healthcare applications. In VCC, vehicles act as the intelligent machines which can be used to collect and transfer the healthcare data to the local, or global sites for storage, and computation purposes, as vehicles are having comparatively limited storage and computation power for handling the multimedia files. However, due to the dynamic changes in topology, and lack of centralized monitoring points, this information can be altered, or misused. These security breaches can result in disastrous consequences such as-loss of life or financial frauds. Therefore, to address these issues, a learning automata-assisted distributive intrusion detection system is designed based on clustering. Although there exist a number of applications where the proposed scheme can be applied but, we have taken multimedia-based healthcare application for illustration of the proposed scheme. In the proposed scheme, learning automata (LA) are assumed to be stationed on the vehicles which take clustering decisions intelligently and select one of the members of the group as a cluster-head. The cluster-heads then assist in efficient storage and dissemination of information through a cloud-based infrastructure. To secure the proposed scheme from malicious activities, standard cryptographic technique is used in which the auotmaton learns from the environment and takes adaptive decisions for identification of any malicious activity in the network. A reward and penalty is given by the stochastic environment where an automaton performs its actions so that it updates its action probability vector after getting the reinforcement signal from the environment. The proposed scheme was evaluated using extensive simulations on ns-2 with SUMO. The results obtained indicate that the proposed scheme yields an improvement of 10 % in detection rate of malicious nodes when compared with the existing schemes.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Speaker diarization is the process of sorting speeches according to the speaker. Diarization helps to search and retrieve what a certain speaker uttered in a meeting. Applications of diarization systemsextend to other domains than meetings, for example, lectures, telephone, television, and radio. Besides, diarization enhances the performance of several speech technologies such as speaker recognition, automatic transcription, and speaker tracking. Methodologies previously used in developing diarization systems are discussed. Prior results and techniques are studied and compared. Methods such as Hidden Markov Models and Gaussian Mixture Models that are used in speaker recognition and other speech technologies are also used in speaker diarization. The objective of this thesis is to develop a speaker diarization system in meeting domain. Experimental part of this work indicates that zero-crossing rate can be used effectively in breaking down the audio stream into segments, and adaptive Gaussian Models fit adequately short audio segments. Results show that 35 Gaussian Models and one second as average length of each segment are optimum values to build a diarization system for the tested data. Uniting the segments which are uttered by same speaker is done in a bottom-up clustering by a newapproach of categorizing the mixture weights.
Resumo:
Clustering schemes improve energy efficiency of wireless sensor networks. The inclusion of mobility as a new criterion for the cluster creation and maintenance adds new challenges for these clustering schemes. Cluster formation and cluster head selection is done on a stochastic basis for most of the algorithms. In this paper we introduce a cluster formation and routing algorithm based on a mobility factor. The proposed algorithm is compared with LEACH-M protocol based on metrics viz. number of cluster head transitions, average residual energy, number of alive nodes and number of messages lost
Resumo:
A large amount of biological data has been produced in the last years. Important knowledge can be extracted from these data by the use of data analysis techniques. Clustering plays an important role in data analysis, by organizing similar objects from a dataset into meaningful groups. Several clustering algorithms have been proposed in the literature. However, each algorithm has its bias, being more adequate for particular datasets. This paper presents a mathematical formulation to support the creation of consistent clusters for biological data. Moreover. it shows a clustering algorithm to solve this formulation that uses GRASP (Greedy Randomized Adaptive Search Procedure). We compared the proposed algorithm with three known other algorithms. The proposed algorithm presented the best clustering results confirmed statistically. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Because of its aberrant activation, the PI3K/AKT/mTOR signaling pathway represents a pharmacological target in blast cells from patients with acute myelogenous leukemia (AML). Using Reverse Phase Protein Microarrays (RPMA), we have analyzed 20 phosphorylated epitopes of the PI3K/Akt/mTor signal pathway of peripheral blood and bone marrow specimens of 84 patients with newly diagnosed AML. Fresh blast cells were grown for 2 h, 4 h or 20 h untreated or treated with a panel of phase I or phase II Akt allosteric inhibitors, either alone or in combination with the mTOR kinase inhibitor Torin1 or the broad RTK inhibitor Sunitinib. By unsupervised hierarchical clustering a strong phosphorylation/activity of most of the sampled members of the PI3K/Akt/mTOR pathway was observed in 70% of samples from AML patients. Remarkably, however, we observed that inhibition of Akt phosphorylation, as well as of its substrates, was transient, and recovered or even increased far above basal level after 20 h in 60% samples. We demonstrated that inhibition of Akt induces FOXO-dependent insulin receptor expression and IRS-1 activation, attenuating the effect of drug treatment by reactivation of PI3K/Akt. Consistent with this model we found that combined inhibition of Akt and RTKs is much more effective than either alone, revealing the adaptive capabilities of signaling networks in blast cells and highliting the limations of these drugs if used as monotherapy.
Resumo:
Intensity non-uniformity (bias field) correction, contextual constraints over spatial intensity distribution and non-spherical cluster's shape in the feature space are incorporated into the fuzzy c-means (FCM) for segmentation of three-dimensional multi-spectral MR images. The bias field is modeled by a linear combination of smooth polynomial basis functions for fast computation in the clustering iterations. Regularization terms for the neighborhood continuity of either intensity or membership are added into the FCM cost functions. Since the feature space is not isotropic, distance measures, other than the Euclidean distance, are used to account for the shape and volumetric effects of clusters in the feature space. The performance of segmentation is improved by combining the adaptive FCM scheme with the criteria used in Gustafson-Kessel (G-K) and Gath-Geva (G-G) algorithms through the inclusion of the cluster scatter measure. The performance of this integrated approach is quantitatively evaluated on normal MR brain images using the similarity measures. The improvement in the quality of segmentation obtained with our method is also demonstrated by comparing our results with those produced by FSL (FMRIB Software Library), a software package that is commonly used for tissue classification.
Resumo:
The notorious "dimensionality curse" is a well-known phenomenon for any multi-dimensional indexes attempting to scale up to high dimensions. One well-known approach to overcome degradation in performance with respect to increasing dimensions is to reduce the dimensionality of the original dataset before constructing the index. However, identifying the correlation among the dimensions and effectively reducing them are challenging tasks. In this paper, we present an adaptive Multi-level Mahalanobis-based Dimensionality Reduction (MMDR) technique for high-dimensional indexing. Our MMDR technique has four notable features compared to existing methods. First, it discovers elliptical clusters for more effective dimensionality reduction by using only the low-dimensional subspaces. Second, data points in the different axis systems are indexed using a single B+-tree. Third, our technique is highly scalable in terms of data size and dimension. Finally, it is also dynamic and adaptive to insertions. An extensive performance study was conducted using both real and synthetic datasets, and the results show that our technique not only achieves higher precision, but also enables queries to be processed efficiently. Copyright Springer-Verlag 2005
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
We propose an adaptive mesh refinement strategy based on exploiting a combination of a pre-processing mesh re-distribution algorithm employing a harmonic mapping technique, and standard (isotropic) mesh subdivision for discontinuous Galerkin approximations of advection-diffusion problems. Numerical experiments indicate that the resulting adaptive strategy can efficiently reduce the computed discretization error by clustering the nodes in the computational mesh where the analytical solution undergoes rapid variation.
Resumo:
Different types of water bodies, including lakes, streams, and coastal marine waters, are often susceptible to fecal contamination from a range of point and nonpoint sources, and have been evaluated using fecal indicator microorganisms. The most commonly used fecal indicator is Escherichia coli, but traditional cultivation methods do not allow discrimination of the source of pollution. The use of triplex PCR offers an approach that is fast and inexpensive, and here enabled the identification of phylogroups. The phylogenetic distribution of E. coli subgroups isolated from water samples revealed higher frequencies of subgroups A1 and B23 in rivers impacted by human pollution sources, while subgroups D1 and D2 were associated with pristine sites, and subgroup B1 with domesticated animal sources, suggesting their use as a first screening for pollution source identification. A simple classification is also proposed based on phylogenetic subgroup distribution using the w-clique metric, enabling differentiation of polluted and unpolluted sites.