965 resultados para Adaptive Controller


Relevância:

100.00% 100.00%

Publicador:

Resumo:

For a class of nonlinear dynamical systems, the adaptive controllers are investigated using direction basis function (DBF) in this paper. Based on the criterion of Lyapunov' stability, DBF is designed which guarantees that the output of the controlled system asymptotically tracks the reference signals. Finally, the simulation shows the good tracking effectiveness of the adaptive controller.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objects with which the hand interacts with may significantly change the dynamics of the arm. How does the brain adapt control of arm movements to this new dynamic? We show that adaptation is via composition of a model of the task's dynamics. By exploring generalization capabilities of this adaptation we infer some of the properties of the computational elements with which the brain formed this model: the elements have broad receptive fields and encode the learned dynamics as a map structured in an intrinsic coordinate system closely related to the geometry of the skeletomusculature. The low--level nature of these elements suggests that they may represent asset of primitives with which a movement is represented in the CNS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivated by rising drilling operation costs, the oil industry has shown a trend toward real-time measurements and control. In this scenario, drilling control becomes a challenging problem for the industry, especially due to the difficulty associated with parameters modeling. One of the drillbit performance evaluators, the Rate Of Penetration (ROP), has been used as a drilling control parameter. However, relationships between operational variables affecting the ROP are complex and not easily modeled. This work presents a neuro-genetic adaptive controller to treat this problem. It is based on an auto-regressive with extra input signals, or ARX model and on a Genetic Algorithm (GA) to control the ROP. © [2006] IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivated by rising drilling operation costs, the oil industry has shown a trend towards real-time measurements and control. In this scenario, drilling control becomes a challenging problem for the industry, especially due to the difficulty associated to parameters modeling. One of the drill-bit performance evaluators, the Rate of Penetration (ROP), has been used in the literature as a drilling control parameter. However, the relationships between the operational variables affecting the ROP are complex and not easily modeled. This work presents a neuro-genetic adaptive controller to treat this problem. It is based on the Auto-Regressive with Extra Input Signals model, or ARX model, to accomplish the system identification and on a Genetic Algorithm (GA) to provide a robust control for the ROP. Results of simulations run over a real offshore oil field data, consisted of seven wells drilled with equal diameter bits, are provided. © 2006 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new structured model-following adaptive approach is presented in this paper to achieve large attitude maneuvers of rigid bodies. First, a nominal controller is designed using the dynamic inversion philosophy. Next, a neuro- adaptive design is proposed to augment the nominal design in order to assure robust performance in the presence of parameter inaccuracies as well as unknown constant external disturbances. The structured approach proposed in this paper (where kinematic and dynamic equations are handled separately), reduces the complexity of the controller structure. From simulation studies, this adaptive controller is found to be very effective in assuring robust performance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The paper presents a new criterion for designing a power-system stabiliser, which is that it should cancel the negative damping torque inherent in a synchronous generator and automatic voltage regulator. The method arises from analysis based on the properties of tensor invariance, but it is easily implemented, and leads to the design of an adaptive controller. Extensive computations and simulation have been performed, and laboratory tests have been conducted on a computer-controlled micromachine system. Results are presented illustrating the effectiveness of the adaptive stabiliser.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, the trajectory tracking control of an autonomous underwater vehicle (AUVs) in six-degrees-of-freedom (6-DOFs) is addressed. It is assumed that the system parameters are unknown and the vehicle is underactuated. An adaptive controller is proposed, based on Lyapunov׳s direct method and the back-stepping technique, which interestingly guarantees robustness against parameter uncertainties. The desired trajectory can be any sufficiently smooth bounded curve parameterized by time even if consist of straight line. In contrast with the majority of research in this field, the likelihood of actuators׳ saturation is considered and another adaptive controller is designed to overcome this problem, in which control signals are bounded using saturation functions. The nonlinear adaptive control scheme yields asymptotic convergence of the vehicle to the reference trajectory, in the presence of parametric uncertainties. The stability of the presented control laws is proved in the sense of Lyapunov theory and Barbalat׳s lemma. Efficiency of presented controller using saturation functions is verified through comparing numerical simulations of both controllers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An adaptive drug delivery design is presented in this paper using neural networks for effective treatment of infectious diseases. The generic mathematical model used describes the coupled evolution of concentration of pathogens, plasma cells, antibodies and a numerical value that indicates the relative characteristic of a damaged organ due to the disease under the influence of external drugs. From a system theoretic point of view, the external drugs can be interpreted as control inputs, which can be designed based on control theoretic concepts. In this study, assuming a set of nominal parameters in the mathematical model, first a nonlinear controller (drug administration) is designed based on the principle of dynamic inversion. This nominal drug administration plan was found to be effective in curing "nominal model patients" (patients whose immunological dynamics conform to the mathematical model used for the control design exactly. However, it was found to be ineffective in curing "realistic model patients" (patients whose immunological dynamics may have off-nominal parameter values and possibly unwanted inputs) in general. Hence, to make the drug delivery dosage design more effective for realistic model patients, a model-following adaptive control design is carried out next by taking the help of neural networks, that are trained online. Simulation studies indicate that the adaptive controller proposed in this paper holds promise in killing the invading pathogens and healing the damaged organ even in the presence of parameter uncertainties and continued pathogen attack. Note that the computational requirements for computing the control are very minimal and all associated computations (including the training of neural networks) can be carried out online. However it assumes that the required diagnosis process can be carried out at a sufficient faster rate so that all the states are available for control computation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Combining the advanced techniques of optimal dynamic inversion and model-following neuro-adaptive control design, an innovative technique is presented to design an automatic drug administration strategy for effective treatment of chronic myelogenous leukemia (CML). A recently developed nonlinear mathematical model for cell dynamics is used to design the controller (medication dosage). First, a nominal controller is designed based on the principle of optimal dynamic inversion. This controller can treat the nominal model patients (patients who can be described by the mathematical model used here with the nominal parameter values) effectively. However, since the system parameters for a realistic model patient can be different from that of the nominal model patients, simulation studies for such patients indicate that the nominal controller is either inefficient or, worse, ineffective; i.e. the trajectory of the number of cancer cells either shows non-satisfactory transient behavior or it grows in an unstable manner. Hence, to make the drug dosage history more realistic and patient-specific, a model-following neuro-adaptive controller is augmented to the nominal controller. In this adaptive approach, a neural network trained online facilitates a new adaptive controller. The training process of the neural network is based on Lyapunov stability theory, which guarantees both stability of the cancer cell dynamics as well as boundedness of the network weights. From simulation studies, this adaptive control design approach is found to be very effective to treat the CML disease for realistic patients. Sufficient generality is retained in the mathematical developments so that the technique can be applied to other similar nonlinear control design problems as well.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A nonlinear adaptive system theoretic approach is presented in this paper for effective treatment of infectious diseases that affect various organs of the human body. The generic model used does not represent any specific disease. However, it mimics the generic immunological dynamics of the human body under pathological attack, including the response to external drugs. From a system theoretic point of view, drugs can be interpreted as control inputs. Assuming a set of nominal parameters in the mathematical model, first a nonlinear controller is designed based on the principle of dynamic inversion. This treatment strategy was found to be effective in completely curing "nominal patients". However, in some cases it is ineffective in curing "realistic patients". This leads to serious (sometimes fatal) damage to the affected organ. To make the drug dosage design more effective, a model-following neuro-adaptive control design is carried out using neural networks, which are trained (adapted) online. From simulation studies, this adaptive controller is found to be effective in killing the invading microbes and healing the damaged organ even in the presence of parameter uncertainties and continuing pathogen attack.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Combining the advanced techniques of optimal dynamic inversion and model-following neuro-adaptive control design, an efficient technique is presented for effective treatment of chronic myelogenous leukemia (CML). A recently developed nonlinear mathematical model for cell dynamics is used for the control (medication) synthesis. First, taking a set of nominal parameters, a nominal controller is designed based on the principle of optimal dynamic inversion. This controller can treat nominal patients (patients having same nominal parameters as used for the control design) effectively. However, since the parameters of an actual patient can be different from that of the ideal patient, to make the treatment strategy more effective and efficient, a model-following neuro-adaptive controller is augmented to the nominal controller. In this approach, a neural network trained online (based on Lyapunov stability theory) facilitates a new adaptive controller, computed online. From the simulation studies, this adaptive control design approach (treatment strategy) is found to be very effective to treat the CML disease for actual patients. Sufficient generality is retained in the theoretical developments in this paper, so that the techniques presented can be applied to other similar problem as well. Note that the technique presented is computationally non-intensive and all computations can be carried out online.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Model Reference Adaptive Control (MRAC) of a wide repertoire of stable Linear Time Invariant (LTI) systems is addressed here. Even an upper bound on the order of the finite-dimensional system is unavailable. Further, the unknown plant is permitted to have both minimum phase and nonminimum phase zeros. Model following with reference to a completely specified reference model excited by a class of piecewise continuous bounded signals is the goal. The problem is approached by taking recourse to the time moments representation of an LTI system. The treatment here is confined to Single-Input Single-Output (SISO) systems. The adaptive controller is built upon an on-line scheme for time moment estimation of a system given no more than its input and output. As a first step, a cascade compensator is devised. The primary contribution lies in developing a unified framework to eventually address with more finesse the problem of adaptive control of a large family of plants allowed to be minimum or nonminimum phase. Thus, the scheme presented in this paper is confined to lay the basis for more refined compensators-cascade, feedback and both-initially for SISO systems and progressively for Multi-Input Multi-Output (MIMO) systems. Simulations are presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A neural-network-aided nonlinear dynamic inversion-based hybrid technique of model reference adaptive control flight-control system design is presented in this paper. Here, the gains of the nonlinear dynamic inversion-based flight-control system are dynamically selected in such a manner that the resulting controller mimics a single network, adaptive control, optimal nonlinear controller for state regulation. Traditional model reference adaptive control methods use a linearized reference model, and the presented control design method employs a nonlinear reference model to compute the nonlinear dynamic inversion gains. This innovation of designing the gain elements after synthesizing the single network adaptive controller maintains the advantages that an optimal controller offers, yet it retains a simple closed-form control expression in state feedback form, which can easily be modified for tracking problems without demanding any a priori knowledge of the reference signals. The strength of the technique is demonstrated by considering the longitudinal motion of a nonlinear aircraft system. An extended single network adaptive control/nonlinear dynamic inversion adaptive control design architecture is also presented, which adapts online to three failure conditions, namely, a thrust failure, an elevator failure, and an inaccuracy in the estimation of C-M alpha. Simulation results demonstrate that the presented adaptive flight controller generates a near-optimal response when compared to a traditional nonlinear dynamic inversion controller.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A simple parameter adaptive controller design methodology is introduced in which steady-state servo tracking properties provide the major control objective. This is achieved without cancellation of process zeros and hence the underlying design can be applied to non-minimum phase systems. As with other self-tuning algorithms, the design (user specified) polynomials of the proposed algorithm define the performance capabilities of the resulting controller. However, with the appropriate definition of these polynomials, the synthesis technique can be shown to admit different adaptive control strategies, e.g. self-tuning PID and self-tuning pole-placement controllers. The algorithm can therefore be thought of as an embodiment of other self-tuning design techniques. The performances of some of the resulting controllers are illustrated using simulation examples and the on-line application to an experimental apparatus.