4 resultados para Adamantanes
Resumo:
New and robust methodologies have been designed for palladium-catalyzed crosscoupling reactions involving·a novel·class oftertiary phosphine ligand incorporating a phospha-adamantane framework. It has been realized that bulky, electron-rich phosphines, when used as ligands for palladium, allow for cross-coupling reactions involving even the less reactive aryl halide substrates with a variety of coupling partners. In an effort to design new ligands suitable for carrying out cross-coupling transformations, the secondary phosphine, 1,3,5,7-tetramethyl-2,4,8-trioxa-6phosphaadamantane was converted into a number of tertiary phosphine derivatives. The ability of these tertiary phosphaadamantanes to act as effective ligands in the palladiumcatalyzed Suzuki cross-coupling was examined. 1,3,5,7-Tetramethyl-6-phenyl-2,4,8trioxa- 6-phosphaadamantane (PA-Ph) used in combination with Pdz(dba)3permitted the reaction of an array of aryl iodides, bromides and chlorides with a variety arylboronic acids to give biaryls in good to excellent yields. Subsequently, palladium complexes of PA-Ph were prepared and isolated in high yields as air stable palladium bisphosphine complexes. Two different kinds of crystals were isolated and upon characterization revealed two complexes, Pd(PA-Ph)z.dba and Pd(PA-Ph)zOz. Preliminary screening for their catalytic activity indicated that the former is more reactive than the latter. Pd(PAPh) z.dba was applied as the catalyst for Sonogashira cross-coupling reactions of aryl iodides and bromides and in the reactions of aryl bromides and chlorides with ketones to give a-arylated ketones at mild temperatures in high yields.
Resumo:
We have investigated some diamondoids encapsulation into single walled carbon nanotubes (with diameters ranging from1.0 up to 2.2 nm) using fully atomistic molecular dynamics simulations. Diamondoids are the smallest hydrogen-terminated nanosized diamond-like molecules. Diamondois have been investigated for a large class of applications, ranging from oil industry to pharmaceuticals. Molecular ordered phases were observed for the encapsulation of adamantane, diamantane, and dihydroxy diamantanes. Chiral ordered phases, such as; double, triple, 4- and 5-stranded helices were also observed for those diamondoids. Our results also indicate that the modification of diamondoids through chemical functionalization with hydroxyl groups can lead to an enhancement of the molecular packing inside the carbon nanotubes in comparison to non-functionalized molecules. For larger diamondoids (such as, adamantane tetramers), we have not observed long-range ordering, but only a tendency of incomplete helical structural formation. © 2012 Materials Research Society.
Resumo:
Résumé: Chaque année, les épidémies saisonnières d’influenza causent de 3 à 5 millions de cas sévères de maladie, entraînant entre 250 000 et 500 000 décès mondialement. Seulement deux classes d’antiviraux sont actuellement commercialisées pour traiter cette infection respiratoire : les inhibiteurs de la neuraminidase, tels que l’oseltamivir (Tamiflu) et les inhibiteurs du canal ionique M2 (adamantanes). Toutefois, leur utilisation est limitée par l’apparition rapide de résistance virale. Il est donc d’un grand intérêt de développer de nouvelles stratégies thérapeutiques pour le traitement de l’influenza. Le virus influenza dépend de l’activation de sa protéine de surface hémagglutinine (HA) pour être infectieux. L’activation a lieu par clivage protéolytique au sein d’une séquence d’acides aminés conservée. Ce clivage doit être effectué par une enzyme de l’hôte, étant donné que le génome du virus ne code pour aucune protéase. Pour les virus infectant l’humain, plusieurs études ont montré le potentiel de protéases à sérine transmembranaires de type II (TTSP) à promouvoir la réplication virale : TMPRSS2, TMPRSS4, HAT, MSPL, Desc1 et matriptase, identifiée récemment par notre équipe (Beaulieu, Gravel et al., 2013), activent l’HA des virus influenza A (principalement H1N1 et H3N2). Toutefois, il existe peu d’information sur le clivage de l’HA des virus influenza B, et seulement TMPRSS2 et HAT ont été identifiées comme étant capables d’activer ce type de virus. Les travaux de ce projet de maîtrise visaient à identifier d’autres TTSP pouvant activer l’HA de l’influenza B. L’efficacité de clivage par la matriptase, hepsine, HAT et Desc1 a été étudiée et comparée entre ces TTSP. Ces quatre protéases s’avèrent capables de cliver l’HA de l’influenza B in vitro. Cependant, seul le clivage par matriptase, hepsine et HAT promeut la réplication virale. De plus, ces TTSP peuvent aussi supporter la réplication de virus influenza A. Ainsi, l’utilisation d’un inhibiteur de TTSP, développé en collaboration avec notre laboratoire, permet de bloquer significativement la réplication virale dans les cellules épithéliales bronchiques humaines Calu-3. Cet inhibiteur se lie de façon covalente et lentement réversible au site actif de la TTSP par un mécanisme slow tight-binding. Puisque cet inhibiteur cible une composante de la cellule hôte, et non une protéine virale, il n’entraîne pas le développement de résistance après 15 passages des virus en présence de l’inhibiteur dans les cellules Calu-3. L’inhibition des TTSP activatrices d’HA dans le système respiratoire humain représente donc une nouvelle stratégie thérapeutique pouvant mener au développement d’antiviraux efficaces contre l’influenza.