887 resultados para Ad-hoc process
Resumo:
Process models are usually depicted as directed graphs, with nodes representing activities and directed edges control flow. While structured processes with pre-defined control flow have been studied in detail, flexible processes including ad-hoc activities need further investigation. This paper presents flexible process graph, a novel approach to model processes in the context of dynamic environment and adaptive process participants’ behavior. The approach allows defining execution constraints, which are more restrictive than traditional ad-hoc processes and less restrictive than traditional control flow, thereby balancing structured control flow with unstructured ad-hoc activities. Flexible process graph focuses on what can be done to perform a process. Process participants’ routing decisions are based on the current process state. As a formal grounding, the approach uses hypergraphs, where each edge can associate any number of nodes. Hypergraphs are used to define execution semantics of processes formally. We provide a process scenario to motivate and illustrate the approach.
Resumo:
The major purpose of Vehicular Ad Hoc Networks (VANETs) is to provide safety-related message access for motorists to react or make a life-critical decision for road safety enhancement. Accessing safety-related information through the use of VANET communications, therefore, must be protected, as motorists may make critical decisions in response to emergency situations in VANETs. If introducing security services into VANETs causes considerable transmission latency or processing delays, this would defeat the purpose of using VANETs to improve road safety. Current research in secure messaging for VANETs appears to focus on employing certificate-based Public Key Cryptosystem (PKC) to support security. The security overhead of such a scheme, however, creates a transmission delay and introduces a time-consuming verification process to VANET communications. This paper proposes an efficient public key management system for VANETs: the Public Key Registry (PKR) system. Not only does this paper demonstrate that the proposed PKR system can maintain security, but it also asserts that it can improve overall performance and scalability at a lower cost, compared to the certificate-based PKC scheme. It is believed that the proposed PKR system will create a new dimension to the key management and verification services for VANETs.
Resumo:
The primary goal of the Vehicular Ad Hoc Network (VANET) is to provide real-time safety-related messages to motorists to enhance road safety. Accessing and disseminating safety-related information through the use of wireless communications technology in VANETs should be secured, as motorists may make critical decisions in dealing with an emergency situation based on the received information. If security concerns are not addressed in developing VANET systems, an adversary can tamper with, or suppress, the unprotected message to mislead motorists to cause traffic accidents and hazards. Current research on secure messaging in VANETs focuses on employing the certificate-based Public Key Infrastructure (PKI) scheme to support message encryption and digital signing. The security overhead of such a scheme, however, creates a transmission delay and introduces a time-consuming verification process to VANET communications. This thesis has proposed a novel public key verification and management approach for VANETs; namely, the Public Key Registry (PKR) regime. Compared to the VANET PKI scheme, this new approach can satisfy necessary security requirements with improved performance and scalability, and at a lower cost by reducing the security overheads of message transmission and eliminating digital certificate deployment and maintenance issues. The proposed PKR regime consists of the required infrastructure components, rules for public key management and verification, and a set of interactions and associated behaviours to meet these rule requirements. This is achieved through a system design as a logic process model with functional specifications. The PKR regime can be used as development guidelines for conforming implementations. An analysis and evaluation of the proposed PKR regime includes security features assessment, analysis of the security overhead of message transmission, transmission latency, processing latency, and scalability of the proposed PKR regime. Compared to certificate-based PKI approaches, the proposed PKR regime can maintain the necessary security requirements, significantly reduce the security overhead by approximately 70%, and improve the performance by 98%. Meanwhile, the result of the scalability evaluation shows that the latency of employing the proposed PKR regime stays much lower at approximately 15 milliseconds, whether operating in a huge or small environment. It is therefore believed that this research will create a new dimension to the provision of secure messaging services in VANETs.
Resumo:
We consider the problem of maximizing the secure connectivity in wireless ad hoc networks, and analyze complexity of the post-deployment key establishment process constrained by physical layer properties such as connectivity, energy consumption and interference. Two approaches, based on graph augmentation problems with nonlinear edge costs, are formulated. The first one is based on establishing a secret key using only the links that are already secured by shared keys. This problem is in NP-hard and does not accept polynomial time approximation scheme PTAS since minimum cutsets to be augmented do not admit constant costs. The second one extends the first problem by increasing the power level between a pair of nodes that has a secret key to enable them physically connect. This problem can be formulated as the optimal key establishment problem with interference constraints with bi-objectives: (i) maximizing the concurrent key establishment flow, (ii) minimizing the cost. We prove that both problems are NP-hard and MAX-SNP with a reduction to MAX3SAT problem.
Resumo:
Many applications can benefit from the accurate surface temperature estimates that can be made using a passive thermal-infrared camera. However, the process of radiometric calibration which enables this can be both expensive and time consuming. An ad hoc approach for performing radiometric calibration is proposed which does not require specialized equipment and can be completed in a fraction of the time of the conventional method. The proposed approach utilizes the mechanical properties of the camera to estimate scene temperatures automatically, and uses these target temperatures to model the effect of sensor temperature on the digital output. A comparison with a conventional approach using a blackbody radiation source shows that the accuracy of the method is sufficient for many tasks requiring temperature estimation. Furthermore, a novel visualization method is proposed for displaying the radiometrically calibrated images to human operators. The representation employs an intuitive coloring scheme and allows the viewer to perceive a large variety of temperatures accurately.
Resumo:
We consider a small extent sensor network for event detection, in which nodes periodically take samples and then contend over a random access network to transmit their measurement packets to the fusion center. We consider two procedures at the fusion center for processing the measurements. The Bayesian setting, is assumed, that is, the fusion center has a prior distribution on the change time. In the first procedure, the decision algorithm at the fusion center is network-oblivious and makes a decision only when a complete vector of measurements taken at a sampling instant is available. In the second procedure, the decision algorithm at the fusion center is network-aware and processes measurements as they arrive, but in a time-causal order. In this case, the decision statistic depends on the network delays, whereas in the network-oblivious case, the decision statistic does not. This yields a Bayesian change-detection problem with a trade-off between the random network delay and the decision delay that is, a higher sampling rate reduces the decision delay but increases the random access delay. Under periodic sampling, in the network-oblivious case, the structure of the optimal stopping rule is the same as that without the network, and the optimal change detection delay decouples into the network delay and the optimal decision delay without the network. In the network-aware case, the optimal stopping problem is analyzed as a partially observable Markov decision process, in which the states of the queues and delays in the network need to be maintained. A sufficient decision statistic is the network state and the posterior probability of change having occurred, given the measurements received and the state of the network. The optimal regimes are studied using simulation.
Resumo:
Cache look up is an integral part of cooperative caching in ad hoc networks. In this paper, we discuss a cooperative caching architecture with a distributed cache look up protocol which relies on a virtual backbone for locating and accessing data within a cooperate cache. Our proposal consists of two phases: (i) formation of a virtual backbone and (ii) the cache look up phase. The nodes in a Connected Dominating Set (CDS) form the virtual backbone. The cache look up protocol makes use of the nodes in the virtual backbone for effective data dissemination and discovery. The idea in this scheme is to reduce the number of nodes involved in cache look up process, by constructing a CDS that contains a small number of nodes, still having full coverage of the network. We evaluated the effect of various parameter settings on the performance metrics such as message overhead, cache hit ratio and average query delay. Compared to the previous schemes the proposed scheme not only reduces message overhead, but also improves the cache hit ratio and reduces the average delay
Resumo:
Cooperative caching is an attractive solution for reducing bandwidth demands and network latency in mobile ad hoc networks. Deploying caches in mobile nodes can reduce the overall traffic considerably. Cache hits eliminate the need to contact the data source frequently, which avoids additional network overhead. In this paper we propose a data discovery and cache management policy for cooperative caching, which reduces the caching overhead and delay by reducing the number of control messages flooded in to the network. A cache discovery process based on location of neighboring nodes is developed for this. The cache replacement policy we propose aims at increasing the cache hit ratio. The simulation results gives a promising result based on the metrics of studies
Resumo:
Recently the focus given to Web Services and Semantic Web technologies has provided the development of several research projects in different ways to addressing the Web services composition issue. Meanwhile, the challenge of creating an environment that provides the specification of an abstract business process and that it is automatically implemented by a composite service in a dynamic way is considered a currently open problem. WSDL and BPEL provided by industry support only manual service composition because they lack needed semantics so that Web services are discovered, selected and combined by software agents. Services ontology provided by Semantic Web enriches the syntactic descriptions of Web services to facilitate the automation of tasks, such as discovery and composition. This work presents an environment for specifying and ad-hoc executing Web services-based business processes, named WebFlowAH. The WebFlowAH employs common domain ontology to describe both Web services and business processes. It allows processes specification in terms of users goals or desires that are expressed based on the concepts of such common domain ontology. This approach allows processes to be specified in an abstract high level way, unburdening the user from the underline details needed to effectively run the process workflow
Resumo:
Opportunistic routing (OR) employs a list of candidates to improve wireless transmission reliability. However, conventional list-based OR restricts the freedom of opportunism, since only the listed nodes are allowed to compete for packet forwarding. Additionally, the list is generated statically based on a single network metric prior to data transmission, which is not appropriate for mobile ad-hoc networks (MANETs). In this paper, we propose a novel OR protocol - Context-aware Adaptive Opportunistic Routing (CAOR) for MANETs. CAOR abandons the idea of candidate list and it allows all qualified nodes to participate in packet transmission. CAOR forwards packets by simultaneously exploiting multiple cross-layer context information, such as link quality, geographic progress, energy, and mobility.With the help of the Analytic Hierarchy Process theory, CAOR adjusts the weights of context information based on their instantaneous values to adapt the protocol behavior at run-time. Moreover, CAOR uses an active suppression mechanism to reduce packet duplication. Simulation results show that CAOR can provide efficient routing in highly mobile environments. The adaptivity feature of CAOR is also validated.
Resumo:
This paper presents the 2005 Miracle’s team approach to the Ad-Hoc Information Retrieval tasks. The goal for the experiments this year was twofold: to continue testing the effect of combination approaches on information retrieval tasks, and improving our basic processing and indexing tools, adapting them to new languages with strange encoding schemes. The starting point was a set of basic components: stemming, transforming, filtering, proper nouns extraction, paragraph extraction, and pseudo-relevance feedback. Some of these basic components were used in different combinations and order of application for document indexing and for query processing. Second-order combinations were also tested, by averaging or selective combination of the documents retrieved by different approaches for a particular query. In the multilingual track, we concentrated our work on the merging process of the results of monolingual runs to get the overall multilingual result, relying on available translations. In both cross-lingual tracks, we have used available translation resources, and in some cases we have used a combination approach.
Resumo:
IEEE 802.11 standard is the dominant technology for wireless local area networks (WLANs). In the last two decades, the Distributed coordination function (DCF) of IEEE 802.11 standard has become the one of the most important media access control (MAC) protocols for mobile ad hoc networks (MANETs). The DCF protocol can also be combined with cognitive radio, thus the IEEE 802.11 cognitive radio ad hoc networks (CRAHNs) come into being. There were several literatures which focus on the modeling of IEEE 802.11 CRAHNs, however, there is still no thorough and scalable analytical models for IEEE 802.11 CRAHNs whose cognitive node (i.e., secondary user, SU) has spectrum sensing and possible channel silence process before the MAC contention process. This paper develops a unified analytical model for IEEE 802.11 CRAHNs for comprehensive MAC layer queuing analysis. In the proposed model, the SUs are modeled by a hyper generalized 2D Markov chain model with an M/G/1/K model while the primary users (PUs) are modeled by a generalized 2D Markov chain and an M/G/1/K model. The performance evaluation results show that the quality-of-service (QoS) of both the PUs and SUs can be statistically guaranteed with the suitable settings of duration of channel sensing and silence phase in the case of under loading.
Resumo:
The multiple-input multiple-output (MIMO) technique can be used to improve the performance of ad hoc networks. Various medium access control (MAC) protocols with multiple contention slots have been proposed to exploit spatial multiplexing for increasing the transport throughput of MIMO ad hoc networks. However, the existence of multiple request-to-send/clear-to-send (RTS/CTS) contention slots represents a severe overhead that limits the improvement on transport throughput achieved by spatial multiplexing. In addition, when the number of contention slots is fixed, the efficiency of RTS/CTS contention is affected by the transmitting power of network nodes. In this study, a joint optimisation scheme on both transmitting power and contention slots number for maximising the transport throughput is presented. This includes the establishment of an analytical model of a simplified MAC protocol with multiple contention slots, the derivation of transport throughput as a function of both transmitting power and the number of contention slots, and the optimisation process based on the transport throughput formula derived. The analytical results obtained, verified by simulation, show that much higher transport throughput can be achieved using the joint optimisation scheme proposed, compared with the non-optimised cases and the results previously reported.