976 resultados para Activity concentration correction
Resumo:
The assembling of a system for field sampling and activity concentration measurement of radon dissolved in groundwater is described. Special attention is given in presenting the calibration procedure to obtain the radon activity concentration in groundwater from the raw counting rate registered in a portable scintillation detector and in establishing the precision of the activity concentration measurements. A field procedure was established and the system tested during one year of monthly observations of (222)Rn activity concentration in groundwater drawn from two wells drilled on metamorphic rocks exposed at Eastern Sao Paulo State, Brazil. The observed mean (222)Rn activity concentrations are 374 Bq/dm(3) in one well and about 1275 Bq/dm(3) in the other one. In both wells the (222)Rn activity concentrations showed a seasonal variation similar to variations previously reported in the literature for the same region. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
High ³⁷Ar activity concentration in soil gas is proposed as a key evidence for the detection of underground nuclear explosion by the Comprehensive Nuclear Test-Ban Treaty. However, such a detection is challenged by the natural background of ³⁷Ar in the subsurface, mainly due to Ca activation by cosmic rays. A better understanding and improved capability to predict ³⁷Ar activity concentration in the subsurface and its spatial and temporal variability is thus required. A numerical model integrating ³⁷Ar production and transport in the subsurface is developed, including variable soil water content and water infiltration at the surface. A parameterized equation for ³⁷Ar production in the first 15 m below the surface is studied, taking into account the major production reactions and the moderation effect of soil water content. Using sensitivity analysis and uncertainty quantification, a realistic and comprehensive probability distribution of natural ³⁷Ar activity concentrations in soil gas is proposed, including the effects of water infiltration. Site location and soil composition are identified as the parameters allowing for a most effective reduction of the possible range of ³⁷Ar activity concentrations. The influence of soil water content on ³⁷Ar production is shown to be negligible to first order, while ³⁷Ar activity concentration in soil gas and its temporal variability appear to be strongly influenced by transient water infiltration events. These results will be used as a basis for practical CTBTO concepts of operation during an OSI.
Resumo:
Tumor functional volume (FV) and its mean activity concentration (mAC) are the quantities derived from positron emission tomography (PET). These quantities are used for estimating radiation dose for a therapy, evaluating the progression of a disease and also use it as a prognostic indicator for predicting outcome. PET images have low resolution, high noise and affected by partial volume effect (PVE). Manually segmenting each tumor is very cumbersome and very hard to reproduce. To solve the above problem I developed an algorithm, called iterative deconvolution thresholding segmentation (IDTS) algorithm; the algorithm segment the tumor, measures the FV, correct for the PVE and calculates mAC. The algorithm corrects for the PVE without the need to estimate camera’s point spread function (PSF); also does not require optimizing for a specific camera. My algorithm was tested in physical phantom studies, where hollow spheres (0.5-16 ml) were used to represent tumors with a homogeneous activity distribution. It was also tested on irregular shaped tumors with a heterogeneous activity profile which were acquired using physical and simulated phantom. The physical phantom studies were performed with different signal to background ratios (SBR) and with different acquisition times (1-5 min). The algorithm was applied on ten clinical data where the results were compared with manual segmentation and fixed percentage thresholding method called T50 and T60 in which 50% and 60% of the maximum intensity respectively is used as threshold. The average error in FV and mAC calculation was 30% and -35% for 0.5 ml tumor. The average error FV and mAC calculation were ~5% for 16 ml tumor. The overall FV error was ~10% for heterogeneous tumors in physical and simulated phantom data. The FV and mAC error for clinical image compared to manual segmentation was around -17% and 15% respectively. In summary my algorithm has potential to be applied on data acquired from different cameras as its not dependent on knowing the camera’s PSF. The algorithm can also improve dose estimation and treatment planning.
Resumo:
Respiratory gating in lung PET imaging to compensate for respiratory motion artifacts is a current research issue with broad potential impact on quantitation, diagnosis and clinical management of lung tumors. However, PET images collected at discrete bins can be significantly affected by noise as there are lower activity counts in each gated bin unless the total PET acquisition time is prolonged, so that gating methods should be combined with imaging-based motion correction and registration methods. The aim of this study was to develop and validate a fast and practical solution to the problem of respiratory motion for the detection and accurate quantitation of lung tumors in PET images. This included: (1) developing a computer-assisted algorithm for PET/CT images that automatically segments lung regions in CT images, identifies and localizes lung tumors of PET images; (2) developing and comparing different registration algorithms which processes all the information within the entire respiratory cycle and integrate all the tumor in different gated bins into a single reference bin. Four registration/integration algorithms: Centroid Based, Intensity Based, Rigid Body and Optical Flow registration were compared as well as two registration schemes: Direct Scheme and Successive Scheme. Validation was demonstrated by conducting experiments with the computerized 4D NCAT phantom and with a dynamic lung-chest phantom imaged using a GE PET/CT System. Iterations were conducted on different size simulated tumors and different noise levels. Static tumors without respiratory motion were used as gold standard; quantitative results were compared with respect to tumor activity concentration, cross-correlation coefficient, relative noise level and computation time. Comparing the results of the tumors before and after correction, the tumor activity values and tumor volumes were closer to the static tumors (gold standard). Higher correlation values and lower noise were also achieved after applying the correction algorithms. With this method the compromise between short PET scan time and reduced image noise can be achieved, while quantification and clinical analysis become fast and precise.
Resumo:
Respiratory gating in lung PET imaging to compensate for respiratory motion artifacts is a current research issue with broad potential impact on quantitation, diagnosis and clinical management of lung tumors. However, PET images collected at discrete bins can be significantly affected by noise as there are lower activity counts in each gated bin unless the total PET acquisition time is prolonged, so that gating methods should be combined with imaging-based motion correction and registration methods. The aim of this study was to develop and validate a fast and practical solution to the problem of respiratory motion for the detection and accurate quantitation of lung tumors in PET images. This included: (1) developing a computer-assisted algorithm for PET/CT images that automatically segments lung regions in CT images, identifies and localizes lung tumors of PET images; (2) developing and comparing different registration algorithms which processes all the information within the entire respiratory cycle and integrate all the tumor in different gated bins into a single reference bin. Four registration/integration algorithms: Centroid Based, Intensity Based, Rigid Body and Optical Flow registration were compared as well as two registration schemes: Direct Scheme and Successive Scheme. Validation was demonstrated by conducting experiments with the computerized 4D NCAT phantom and with a dynamic lung-chest phantom imaged using a GE PET/CT System. Iterations were conducted on different size simulated tumors and different noise levels. Static tumors without respiratory motion were used as gold standard; quantitative results were compared with respect to tumor activity concentration, cross-correlation coefficient, relative noise level and computation time. Comparing the results of the tumors before and after correction, the tumor activity values and tumor volumes were closer to the static tumors (gold standard). Higher correlation values and lower noise were also achieved after applying the correction algorithms. With this method the compromise between short PET scan time and reduced image noise can be achieved, while quantification and clinical analysis become fast and precise.
Resumo:
Inventories and vertical distribution of (137)Cs were determined in La Plata region undisturbed soils, Argentina. A mean inventory value of 891 ± 220 Bq/m(2) was established, which is compatible with the values expected from atmospheric weapon tests fallout. The study was complemented with pH, organic carbon fraction, texture and mineralogical soil analyses. Putting together Southern Hemisphere (137)Cs inventory data, it is possible to correlate these data with the mean annual precipitations. The large differences in (137)Cs concentration profiles were attributed to soil properties, especially the clay content and the pH values. A convection-dispersion model with irreversible retention was used to fit the activity concentration profiles. The obtained effective diffusion coefficient and effective convection velocity parameters values were in the range from 0.2 cm(2)/y to 0.4 cm(2)/y and from 0.23 cm/y to 0.43 cm/y, respectively. These data are in agreement with values reported in literature. In general, with the growth of clay content in the soil, there was an increase in the transfer rate from free to bound state. Finally, the highest transfer rate from free to bound state was obtained for soil pH value equal to 8.
Resumo:
As part of a project to use the long-lived (T(1/2)=1200a) (166m)Ho as reference source in its reference ionisation chamber, IRA standardised a commercially acquired solution of this nuclide using the 4pibeta-gamma coincidence and 4pigamma (NaI) methods. The (166m)Ho solution supplied by Isotope Product Laboratories was measured to have about 5% Europium impurities (3% (154)Eu, 0.94% (152)Eu and 0.9% (155)Eu). Holmium had therefore to be separated from europium, and this was carried out by means of ion-exchange chromatography. The holmium fractions were collected without europium contamination: 162h long HPGe gamma measurements indicated no europium impurity (detection limits of 0.01% for (152)Eu and (154)Eu, and 0.03% for (155)Eu). The primary measurement of the purified (166m)Ho solution with the 4pi (PC) beta-gamma coincidence technique was carried out at three gamma energy settings: a window around the 184.4keV peak and gamma thresholds at 121.8 and 637.3keV. The results show very good self-consistency, and the activity concentration of the solution was evaluated to be 45.640+/-0.098kBq/g (0.21% with k=1). The activity concentration of this solution was also measured by integral counting with a well-type 5''x5'' NaI(Tl) detector and efficiencies computed by Monte Carlo simulations using the GEANT code. These measurements were mutually consistent, while the resulting weighted average of the 4pi NaI(Tl) method was found to agree within 0.15% with the result of the 4pibeta-gamma coincidence technique. An ampoule of this solution and the measured value of the concentration were submitted to the BIPM as a contribution to the Système International de Référence.
Resumo:
Aim: When planning SIRT using 90Y microspheres, the partition model is used to refine the activity calculated by the body surface area (BSA) method to potentially improve the safety and efficacy of treatment. For this partition model dosimetry, accurate determination of mean tumor-to-normal liver ratio (TNR) is critical since it directly impacts absorbed dose estimates. This work aimed at developing and assessing a reliable methodology for the calculation of 99mTc-MAA SPECT/CT-derived TNR ratios based on phantom studies. Materials and methods: IQ NEMA (6 hot spheres) and Kyoto liver phantoms with different hot/background activity concentration ratios were imaged on a SPECT/CT (GE Infinia Hawkeye 4). For each reconstruction with the IQ phantom, TNR quantification was assessed in terms of relative recovery coefficients (RC) and image noise was evaluated in terms of coefficient of variation (COV) in the filled background. RCs were compared using OSEM with Hann, Butterworth and Gaussian filters, as well as FBP reconstruction algorithms. Regarding OSEM, RCs were assessed by varying different parameters independently, such as the number of iterations (i) and subsets (s) and the cut-off frequency of the filter (fc). The influence of the attenuation and diffusion corrections was also investigated. Furthermore, both 2D-ROIs and 3D-VOIs contouring were compared. For this purpose, dedicated Matlab© routines were developed in-house for automatic 2D-ROI/3D-VOI determination to reduce intra-user and intra-slice variability. Best reconstruction parameters and RCs obtained with the IQ phantom were used to recover corrected TNR in case of the Kyoto phantom for arbitrary hot-lesion size. In addition, we computed TNR volume histograms to better assess uptake heterogeneityResults: The highest RCs were obtained with OSEM (i=2, s=10) coupled with the Butterworth filter (fc=0.8). Indeed, we observed a global 20% RC improvement over other OSEM settings and a 50% increase as compared to the best FBP reconstruction. In any case, both attenuation and diffusion corrections must be applied, thus improving RC while preserving good image noise (COV<10%). Both 2D-ROI and 3D-VOI analysis lead to similar results. Nevertheless, we recommend using 3D-VOI since tumor uptake regions are intrinsically 3D. RC-corrected TNR values lie within 17% around the true value, substantially improving the evaluation of small volume (<15 mL) regions. Conclusions: This study reports the multi-parameter optimization of 99mTc MAA SPECT/CT images reconstruction in planning 90Y dosimetry for SIRT. In phantoms, accurate quantification of TNR was obtained using OSEM coupled with Butterworth and RC correction.
Resumo:
A radioatividade natural presente em solos, rochas e materiais de construção, devida ao 40K e às séries radioativas do 232Th e 238U é a principal contribuição à exposição externa aos seres humanos. Neste trabalho, determinou-se as concentrações de atividade de 226Ra (da série do 238U), 232Th e 40K presentes em 50 amostras de tintas látex de cor branca comercializadas no Brasil, especificamente, 15 do tipo econômico, 15 do tipo standard, 20 do tipo premium e em uma amostra de dióxido de titânio. As amostras foram seladas e armazenadas por um período mínimo de 30 dias para se alcançar o equilíbrio radioativo secular nas séries do 238U e do 232Th e medidas pela técnica analítica de espectrometria gama de alta resolução. As concentrações de atividade foram calculadas utilizando-se as médias ponderadas pelas incertezas do 214Pb e 214Bi para o 226Ra e médias ponderadas pelas incertezas do 228Ac, 212Pb e 212Bi para o 232Th. A concentração de atividade do 40K foi determinada pela sua transição única de 1460,8 keV. Fatores de autoatenuação gama foram calculados e utilizados para correção da concentração de atividade das amostras com densidade maior que 1,0 g.cm-3. Os índices radiológicos equivalente em rádio (Raeq), índice de concentração de atividade (Iγ), índice de risco à exposição gama interna (Hin), o índice de risco à exposição gama externa (Hex) e a taxa de dose (D) e dose efetiva anual (Def) foram calculados a partir das concentrações de atividade do 226Ra, 232Th e 40K. As concentrações de atividade de 226Ra das tintas variaram entre valores abaixo da atividade mínima detectável e 38,7 Bq.kg-1, as de 232Th variaram entre valores abaixo da atividade mínima detectável e 101,2 Bq.kg-1 e as de 40K variaram entre valores abaixo da atividade mínima detectável e 256 Bq.kg-1. O Raeq variou entre 1,41 Bq.kg-1 e 203 Bq.kg-1, o Iγ variou entre 0,0047 e 0,720, o Hin variou entre 0,0076 e 0,653 e o Hex variou entre 0,0038 e 0,549. A taxa de dose variou de 0,170 nGy.h-1 a 21,3 nGy.h-1 e a dose efetiva anual variou entre 0,83 μSv.a-1 e 104,2 μSv.a-1. Estes resultados mostram que as concentrações de atividades das tintas utilizadas neste estudo estão abaixo dos limites recomendados por Hassan et al. para Raeq (370 Bq.kg-1), pela Comissão Européia para o Iγ (limite de 2 para materiais superficiais) e pela Organização para Cooperação Econômica e Desenvolvimento para Hin e para Hex (ambos com limite de 1), para todas as 50 amostras estudadas, mostrando assim a segurança destas tintas com relação a proteção radiológica.
Resumo:
Este trabalho avaliou a concentração dos radioelementos K, eU e eTh em amostras de granitos do Estado de Rondônia, Brasil. A análise estatística dos dados obtidos indicou que eles seguem distribuições lognormais. Os valores modais encontrados correspondem a cerca de 11% para K, 29 ppm para eU e 85 ppm para eTh. Correlações diretas significativas foram determinadas entre as concentrações dos três radioelementos, isto é, r = 0,71 (entre K e eU), r = 0,72 (entre K e eTh)e r = 0,72 (entre eU e eTh), sugerindo que são congruentes os processos de seu acúmulo nos minerais das rochas analisadas. Os dados de concentração permitiram estimar a taxa de dose absorvida de radiação no ar acima de 1 m do nível do terreno, a qual também segue uma distribuição lognormal, com valor modal de 2,7 mSv/ano, que é ligeiramente superior à média global de 2,4 mSv/ano. Os resultados obtidos também permitiram avaliar, do ponto de vista radiométrico, se os granitos analisados são adequados para emprego como revestimento em construção civil.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this study the inhalation doses and respective risk are calculated for the population living within a 20 km radius of a coal-fired power plant. The dispersion and deposition of natural radionuclides were simulated by a Gaussian dispersion model estimating the ground level activity concentration. The annual effective dose and total risk were 0.03205 mSv/y and 1.25 x 10-8, respectively. The effective dose is lower than the limit established by the ICRP and the risk is lower than the limit proposed by the U.S. EPA, which means that the considered exposure does not pose any risk for the public health.
Resumo:
Coal contains trace elements and naturally occurring radionuclides such as 40K, 232Th, 238U. When coal is burned, minerals, including most of the radionuclides, do not burn and concentrate in the ash several times in comparison with their content in coal. Usually, a small fraction of the fly ash produced (2-5%) is released into the atmosphere. The activities released depend on many factors (concentration in coal, ash content and inorganic matter of the coal, combustion temperature, ratio between bottom and fly ash, filtering system). Therefore, marked differences should be expected between the by-products produced and the amount of activity discharged (per unit of energy produced) from different coal-fired power plants. In fact, the effects of these releases on the environment due to ground deposition have been received some attention but the results from these studies are not unanimous and cannot be understood as a generic conclusion for all coal-fired power plants. In this study, the dispersion modelling of natural radionuclides was carried out to assess the impact of continuous atmospheric releases from a selected coal plant. The natural radioactivity of the coal and the fly ash were measured and the dispersion was modelled by a Gaussian plume estimating the activity concentration at different heights up to a distance of 20 km in several wind directions. External and internal doses (inhalation and ingestion) and the resulting risk were calculated for the population living within 20 km from the coal plant. In average, the effective dose is lower than the ICRP’s limit and the risk is lower than the U.S. EPA’s limit. Therefore, in this situation, the considered exposure does not pose any risk. However, when considering the dispersion in the prevailing wind direction, these values are significant due to an increase of 232Th and 226Ra concentrations in 75% and 44%, respectively.
Resumo:
Since the 1990s, regular comparisons of gamma-ray spectrometry in Switzerland were organized to improve laboratory abilities to measure the radioactivity in the environment and food stuffs at typical routine levels. The activity concentration of the test samples and the evaluation of the associated uncertainties remained each year the main required test result. Over the years, the comparisons used certified reference solutions as well as environmental samples. The aim of this study is to research the effect of the comparisons on measurement quality. An analysis of the seven last interlaboratory comparisons revealed that the Swiss measurement capability is up to date. In addition, the results showed that the participants now have an improved evaluation of the uncertainties associated with their measurement.