942 resultados para Active-transport
Resumo:
Purpose:This chapter addresses the economic assessment of health benefits of active transport and presents most recent valuation studies with an overview of progresses made towards the inclusion of health benefits in the cost-benefit analysis (CBA) of active transport. Methodology/approach: It is built upon the contracted study for the World Health Organization (WHO) on the economic appraisal of health benefits of walking and cycling investments at the city of Viana do Castelo, the former pilot study in Portugal for evaluating the health benefits of non-motorized transport using the WHO Health Economic Assessment Tool (HEAT). The relative risk values adopted in the HEAT for walking refer to adult population of the age group 20â 74 years and the assessment focus in on average physical activity/regular behaviour of groups of pedestrians and all-cause mortality health impacts. During the case study, it was developed and implemented a mobility survey which aimed to collect behavioural data before and after a street intervention in the historic centre. Findings: Most recent appraisal guidance of walking and cycling and health impact modelling studies reviewed confirm that further research is expected before a more comprehensive appraisal procedure can be adopted in Europe, able to integrate physical activity effects along with other health risks such as those related to road traffic injuries and exposure to air pollution. Social implications: The health benefits assessment of walking investments helped local decision-makers to progress towards sustainable mobility options in the city. Making the population aware of the potential health benefits of regular walking can encourage more people to uptake active transport as part of their daily activities. Originality/value: This study provides a useful review of the health benefits of active transport with a comprehensive analysis of valuation studies, presenting value-added information. It then reports a former assessment of the health effects of active transport in the Portuguese context (case study) using the state-of-the-art economic analysis tool (HEAT) of the World Health Organization which is believed to contribute to a paradigm shift in the transport policy and appraisal practice given the need of shaping future cities (and their citizens) for health through more investments in active transport.
Resumo:
Membrane transport of proton and calcium (Ca2+) plays a fundamental role in growth and developmental processes in higher plant cells. The plasma membrane contains an ATPase (P-ATPase) that pumps protons into the extracellular space, whereas two proton pumps, a vacuolar-type ATPase (V-ATPase) and a pyrophosphatase (H+-PPase) are associated with the tonoplast and pump protons into the vacuole. The P-ATPase, V-ATPase and H+-PPase catalyse electrogenic H+-translocation, giving rise to a proton motive force used to transport different molecules, via specific transport proteins (channels or carriers: H+-symport or H+-antiport), across the plasma membrane and the tonoplast
Resumo:
Leishmania spp. are the causative agents of leishmaniasis, a complex of diseases with a broad spectrum of clinical manifestations. Leishmania (Leishmania) amazonensis is a main etiological agent of diffuse cutaneous leishmaniasis. Leishmania spp., as other trypanosomatids, possess a metabolism based significantly on the consumption of amino acids. However, the transport of amino acids in these organisms remains poorly understood with few exceptions. Glutamate transport is an important biological process in many organisms. In the present work, the transport of glutamate is characterized. This process is performed by a single kinetic system (K-m=0.59 +/- 0.04 mM, V-max=0.123 +/- 0.003 nmol/min per 20 x 10(6) cells) showing an energy of activation of 52.38 +/- 4.7 kJ/mol and was shown to be partially inhibited by analogues, such as glutamine, aspartate, alpha-ketoglutarate and oxaloacetate, methionine, and alanine. The transport activity was sensitive to the extracellular concentration of H+ but not to Na+ or K+. However, unlike other amino acid transporters presently characterized, the treatment with specific ionophores confirmed the participation of a K+, and not H+ membrane gradient in the transport process.
Resumo:
Incomplete and/or sluggish maltotriose fermentation causes both quality and economic problems in the ale-brewing industry. Although it has been proposed previously that the sugar uptake must be responsible for these undesirable phenotypes, there have been conflicting reports on whether all the known alpha-glucoside transporters in Saccharomyces cerevisiae (MALx1, AGT1, and MPH2 and MPH3 transporters) allow efficient maltotriose utilization by yeast cells. We characterized the kinetics of yeast cell growth, sugar consumption, and ethanol production during maltose or maltotriose utilization by several S. cerevisiae yeast strains (both MAL constitutive and AM inducible) and by their isogenic counterparts with specific deletions of the AGT1 gene. Our results clearly showed that yeast strains carrying functional permeases encoded by the MAL21, MAL31, and/or MAL41 gene in their plasma membranes were unable to utilize maltotriose. While both high-and low-affinity transport activities were responsible for maltose uptake from the medium, in the case of maltotriose, the only low-affinity (K-m, 36 +/- 2 mM) transport activity was mediated by the AGT1 permease. In conclusion, the AGT1 transporter is required for efficient maltotriose fermentation by S. cerevisiae yeasts, highlighting the importance of this permease for breeding and/or selection programs aimed at improving sluggish maltotriose fermentations.
Resumo:
The enzyme activation-induced deaminase (AID) triggers antibody diversification in B cells by catalyzing deamination and consequently mutation of immunoglobulin genes. To minimize off-target deamination, AID is restrained by several regulatory mechanisms including nuclear exclusion, thought to be mediated exclusively by active nuclear export. Here we identify two other mechanisms involved in controlling AID subcellular localization. AID is unable to passively diffuse into the nucleus, despite its small size, and its nuclear entry requires active import mediated by a conformational nuclear localization signal. We also identify in its C terminus a determinant for AID cytoplasmic retention, which hampers diffusion to the nucleus, competes with nuclear import and is crucial for maintaining the predominantly cytoplasmic localization of AID in steady-state conditions. Blocking nuclear import alters the balance between these processes in favor of cytoplasmic retention, resulting in reduced isotype class switching.
Resumo:
Introduction : Une majorité de Canadiens adopte un mode de vie sédentaire qui est un facteur de risque important pour différents problèmes de santé. Dernièrement, des interventions en santé publique ciblent le transport actif pour augmenter la pratique d’activité physique. Objectif : L’objectif de cette étude est de quantifier la direction et la taille de l’association entre l’état de santé rapporté par des adultes montréalais et leur utilisation de la marche et du vélo utilitaires. Méthode : L’échantillon comprend 4503 résidents de l’Île de Montréal, âgés de 18 ans et plus, ayant répondu à un sondage téléphonique sur la pratique de l’activité physique et du transport actif. Des analyses de régression logistique multiples ont été appliquées pour examiner l’association entre l’état de santé auto-rapporté et la pratique du vélo (N=4386) et entre l’état de santé auto-rapporté et la pratique de la marche utilitaire (N=4350). Résultats : Les gens ayant une santé perçue comme bonne et moyenne/mauvaise ont une probabilité plus faible de pratiquer la marche utilitaire (OR = 0,740; p < 0,05 et OR = 0,552; p < 0,01) que ceux rapportant une excellente santé, alors que cette association n’est pas significative pour la pratique du vélo utilitaire dans notre étude. Conclusion : Bien que les résultats obtenus ne soient pas tous statistiquement significatifs, la probabilité d’utiliser le transport actif semble plus faible chez les adultes indiquant un moins bon état de santé par rapport aux adultes indiquant que leur état de santé est excellent.
Resumo:
In unstimulated cells, proteins of the nuclear factor kappaB (NF-kappaB) transcription factor family are sequestered in the cytoplasm through interactions with IkappaB inhibitor proteins. Tumor necrosis factor alpha (TNF-alpha) activates the degradation of IkappaB-alpha and the nuclear import of cytoplasmic NF-kappaB. Nuclear localization of numerous cellular proteins is mediated by the ability of the cytoskeleton, usually microtubules, to direct their perinuclear accumulation. In a former study we have shown that activated NF-kappaB rapidly moves from distal processes in neurons towards the nucleus. The fast transport rate suggests the involvement of motor proteins in the transport of NF-kappaB. Here we address the question how NF-kappaB arrives at the nuclear membrane before import in non-neuronal cells, i.e., by diffusion alone or with the help of active transport mechanisms. Using confocal microscopy imaging and analysis of nuclear protein extracts, we show that NF-kappaB movement through the cytoplasm to the nucleus is independent of the cytoskeleton, in the three cell lines investigated here. Additionally we demonstrate that NF-kappaB p65 is not associated with the dynein/dynactin molecular motor complex. We propose that cells utilize two distinct mechanisms of NF-kappaB transport: (1) signaling via diffusion over short distances in non-neuronal cells and (2) transport via motor proteins that move along the cytoskeleton in neuronal processes where the distances between sites of NF-kappaB activation and nucleus can be vast.
Resumo:
In addition to its role as a protein component in Leishmania, serine is also a precursor for the synthesis of both phosphatidylserine, which is a membrane molecule involved in parasite invasion and inactivation of macrophages, and sphingolipids, which are necessary for Leishmania to differentiate into its infective forms. We have characterized serine uptake in both promastigote and amastigote forms of Leishmania (Leishmania) amazonensis. In promastigotes, kinetic data show a single, saturable transport system, with a Km of 0.253 +/- 0.01 mM and a maximum velocity of 0.246 +/- 0.04 nmol/min per 107 cells. Serine transport increased linearly with temperature in the range from 20 degrees C to 45 degrees C, allowing the calculation of an activation energy of 7.09 kJ/mol. Alanine, cysteine, glycine, threonine, valine and ethanolamine competed with the substrate at a ten-fold excess concentration. Serine uptake was dependent on pH, with an optimum activity at pH 7.5. The characterization of the serine transport process in amastigotes revealed a transport system with a similar Km, energy of activation and pH response to that found in promastigotes, suggesting that the same transport system is active in both insect vector and mammalian host Leishmania stages. This could constitute an evolutionary mechanism that guarantees the provision of such an essential molecule during host change events, such as differentiation into amastigotes and macrophage invasion, as well as to ensure that the parasite maintains the infection in the mammalian host. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A number of tight urinary epithelia, as exemplified by the turtle bladder, acidify the luminal solution by active transport of H+ across the luminal cell membrane. The rate of active H+ transport (JH) decreases as the electrochemical potential difference for H+ [delta mu H = mu H(lumen) - mu H(serosa)] across the epithelium is increased. The luminal cell membrane has a low permeability for H+ equivalents and a high electrical resistance compared with the basolateral cell membrane. Changes in JH thus reflect changes in active H+ transport across the luminal membrane. To examine the control of JH by delta mu H in the turtle bladder, transepithelial electrical potential differences (delta psi) were imposed at constant acid-base conditions or the luminal pH was varied at delta psi = 0 and constant serosal PCO2 and pH. When the luminal compartment was acidified from pH 7 to 4 or was made electrically positive, JH decreased as a linear function of delta mu H as previously described. When the luminal compartment was made alkaline from pH 7 to 9 or was made electrically negative, JH reached a maximal value, which was the same whether the delta mu H was imposed as a delta pH or a delta psi. The nonlinear JH vs. delta mu H relation does not result from changes in the number of pumps in the luminal membrane or from changes in the intracellular pH, but is a characteristic of the H+ pumps themselves. We propose a general scheme, which, because of its structural features, can account for the nonlinearity of the JH vs. delta mu H relations and, more specifically, for the kinetic equivalence of the effects of the chemical and electrical components of delta mu H. According to this model, the pump complex consists of two components: a catalytic unit at the cytoplasmic side of the luminal membrane, which mediates the ATP-driven H+ translocation, and a transmembrane channel, which mediates the transfer of H+ from the catalytic unit to the luminal solution. These two components may be linked through a buffer compartment for H+ (an antechamber).
Resumo:
Transcriptional induction of many stress-response genes is dependent on stress-induced nuclear accumulation of stress-activated protein kinases (SAPKs). In the fission yeast Schizosaccharomyces pombe, nuclear accumulation of the SAPK Spc1 (also known as StyI) requires activating phosphorylation catalyzed by the SAPK kinase Wis1; however, it is unknown whether the localization of Spc1 is regulated by nuclear transport factors. Herein are reported studies that show that Spc1 localization is regulated by active transport mechanisms during osmotic stress. Nuclear import of Spc1 requires Pim1, a homologue of the guanine nucleotide exchange factor RCC1 that is essential for nucleocytoplasmic shuttling of proteins. Nuclear export of Spc1 is regulated by the export factor Crm1. An Spc1–Crm1 complex forms as Spc1 is exported from the nucleus. Wis1 and the tyrosine phosphatases Pyp1 and Pyp2 that inactivate Spc1 are excluded from the nucleus by a Crm1-independent mechanism; hence the nuclear import of Spc1 leads to transient isolation from its regulatory proteins. Thus, active nucleocytoplasmic shuttling is required for both the function and regulation of Spc1 during the osmotic shock response.
Resumo:
Purpose. To determine whether Australia's Walk to Work Day media campaign resulted in behavioural change among targeted groups. Methods. Pre- and postcampaign telephone surveys of a cohort of adults aged 18 to 65 years (n = 1100, 55% response rate) were randomly sampled from Australian major melropolitan areas. Tests for dependent samples were applied (McNemax chi(2) or paired t-test). Results. Among participants who did not usually actively commute to work was a significant decrease in car only use an increase in walking combined with public transport. Among those who were employed was a significant increase in total time walking (+16 min/wk; t [780] = 2.04, p < .05) and in other moderate physical activity (+120 min/wk; t [1087] = 4.76, p < .005), resulting in a significant decrease in the proportion who were inactive (chi(2) (1) = 6.1, p < .05). Conclusion. Although nonexperimental, the Walk to Work Day initiative elicited short-term changes in targeted behaviors among target groups. Reinforcement by integrating worksite health promotion strategies may be required for sustained effects.
Resumo:
The effects of sane anabolic and naturally-occuring sex steroids on intestinal transport of leucine have been studied in rainbow trout (Sallno gairdneri), in vivo (gut perfusion), and in vitro (everted gut sacs or intestinal strips). Administration of 17a-methyltestosterone (Mr) by injection for a prolo03ed period of time, enhanced intestinal transport and accumulation of leucine. 11-ketotestosterone (KT) or MT treatment in vitro, by direct addition to incubation media, elicited significant short-term increases in active transport of leucine, without effecting intestinal accumulation. Luminal administration of Mr in vivo similarly elicited short-term responses, without effecting leucine accumulation in the intestine or other peripheral tissues. However; neither MT nor KT significantly affected intestinal transport of water in trout. Although long term injection of oestradiol (E2) enhanced intestinal transport and accumulation of leucine, E2 treatment in vitro was without effect. Addition of ouabain or 2,4,dinitrophenol in the presence of MT abolished steroid-stimulated leucine transform, in vitro. No significant differences were observed between immature male or female trout with respect to either transport of leucine and water, or intestinal granular cell density. However, 'apparent' Na+ absorption and percentage fold height were higher in females, while total intestinal thickness and enterocyte heights were greater in males. These sex differences were essentially abolished. after gonadectany. It is suggested that the short-term effects of the androgenic steroids might be partly mediated through increased activity of Na+,K+,ATPase, and that steroid-induced growth promotion in fish may,to sane extent, be a consequence of enhanced efficiency of intestinal function.
Resumo:
Maltose-binding protein is the periplasmic component of the ABC transporter responsible for the uptake of maltose/maltodextrins. The Xanthomonas axonopodis pv. citri maltose-binding protein MalE has been crystallized at 293 Kusing the hanging-drop vapour-diffusion method. The crystal belonged to the primitive hexagonal space group P6(1)22, with unit-cell parameters a = 123.59, b = 123.59, c = 304.20 angstrom, and contained two molecules in the asymetric unit. It diffracted to 2.24 angstrom resolution.