956 resultados para Active audition, Self-organisation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel method for enabling a robot to determine the direction to a sound source through interacting with its environment. The method uses a new neural network, the Parameter-Less Self-Organizing Map algorithm, and reinforcement learning to achieve rapid and accurate response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sophisticated models of human social behaviour are fast becoming highly desirable in an increasingly complex and interrelated world. Here, we propose that rather than taking established theories from the physical sciences and naively mapping them into the social world, the advanced concepts and theories of social psychology should be taken as a starting point, and used to develop a new modelling methodology. In order to illustrate how such an approach might be carried out, we attempt to model the low elaboration attitude changes of a society of agents in an evolving social context. We propose a geometric model of an agent in context, where individual agent attitudes are seen to self-organise to form ideologies, which then serve to guide further agent-based attitude changes. A computational implementation of the model is shown to exhibit a number of interesting phenomena, including a tendency for a measure of the entropy in the system to decrease, and a potential for externally guiding a population of agents towards a new desired ideology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a protocol for dynamically configuring wireless sensor nodes into logical clusters. The concept is to be able to inject an overlay configuration into an ad-hoc network of sensor nodes or similar devices, and have the network configure itself organically. The devices are arbitrarily deployed and have initially have no information whatsoever concerning physical location, topology, density or neighbourhood. The Emergent Cluster Overlay (ECO) protocol is totally self-configuring and has several novel features, including nodes self-determining their mobility based on patterns of neighbour discovery, and that the target cluster size is specified externally (by the sensor network application) and is not directly coupled to radio communication range or node packing density. Cluster head nodes are automatically assigned as part of the cluster configuration process, at no additional cost. ECO is ideally suited to applications of wireless sensor networks in which localized groups of sensors act cooperatively to provide a service. This includes situations where service dilution is used (dynamically identifying redundant nodes to conserve their resources).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An implicitly parallel method for integral-block driven restricted active space self-consistent field (RASSCF) algorithms is presented. The approach is based on a model space representation of the RAS active orbitals with an efficient expansion of the model subspaces. The applicability of the method is demonstrated with a RASSCF investigation of the first two excited states of indole

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates dendritic peptides capable of assembling into nanostructured gels, and explores the effect on self-assembly of mixing different molecular building blocks. Thermal measurements, small angle Xray scattering (SAXS) and circular dichroism (CD) spectroscopy are used to probe these materials on macroscopic, nanoscopic and molecular length scales. The results from these investigations demonstrate that in this case, systems with different "size" and "chirality" factors can self-organise, whilst systems with different "shape" factors cannot. The "size" and "chirality" factors are directly connected with the molecular information programmed into the dendritic peptides, whilst the shape factor depends on the group linking these peptides together-this is consistent with molecular recognition hydrogen bond pathways between the peptidic building blocks controlling the ability of these systems to self-recognise. These results demonstrate that mixtures of relatively complex peptides, with only subtle differences on the molecular scale, can self-organise into nanoscale structures, an important step in the spontaneous assembly of ordered systems from complex mixtures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The self organising map is a well established unsupervised
learning technique which is able to form sophisticated representations of an input data set. However, conventional Self Organising Map (SOM) algorithms are limited to the production of topological maps — that is, maps where distance between points on the map have a direct relationship to the Euclidean distance between the training vectors corresponding to those points.

It would be desirable to be able to create maps which form clusters on primitive attributes other than Euclidean distance; for example, clusters based upon orientation or shape. Such maps could provide a novel approach to pattern recognition tasks by providing a new method to associate groups of data.

In this paper, it is shown that the type of map produced by SOM algorithms is a direct consequence of the lateral connection strategy employed. Given this knowledge, a technique is required to establish the feasability of using an alternative lateral connection strategy. Such a technique is presented. Using this technique, it is possible to rule out lateral connection strategies that will not produce output states useful to the organisation process. This technique is demonstrated using conventional Laplacian interconnection as well as a number of novel interconnection strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer science and electrical engineering have been the great success story of the twentieth century. The neat modularity and mapping of a language onto circuits has led to robots on Mars, desktop computers and smartphones. But these devices are not yet able to do some of the things that life takes for granted: repair a scratch, reproduce, regenerate, or grow exponentially fast–all while remaining functional.

This thesis explores and develops algorithms, molecular implementations, and theoretical proofs in the context of “active self-assembly” of molecular systems. The long-term vision of active self-assembly is the theoretical and physical implementation of materials that are composed of reconfigurable units with the programmability and adaptability of biology’s numerous molecular machines. En route to this goal, we must first find a way to overcome the memory limitations of molecular systems, and to discover the limits of complexity that can be achieved with individual molecules.

One of the main thrusts in molecular programming is to use computer science as a tool for figuring out what can be achieved. While molecular systems that are Turing-complete have been demonstrated [Winfree, 1996], these systems still cannot achieve some of the feats biology has achieved.

One might think that because a system is Turing-complete, capable of computing “anything,” that it can do any arbitrary task. But while it can simulate any digital computational problem, there are many behaviors that are not “computations” in a classical sense, and cannot be directly implemented. Examples include exponential growth and molecular motion relative to a surface.

Passive self-assembly systems cannot implement these behaviors because (a) molecular motion relative to a surface requires a source of fuel that is external to the system, and (b) passive systems are too slow to assemble exponentially-fast-growing structures. We call these behaviors “energetically incomplete” programmable behaviors. This class of behaviors includes any behavior where a passive physical system simply does not have enough physical energy to perform the specified tasks in the requisite amount of time.

As we will demonstrate and prove, a sufficiently expressive implementation of an “active” molecular self-assembly approach can achieve these behaviors. Using an external source of fuel solves part of the the problem, so the system is not “energetically incomplete.” But the programmable system also needs to have sufficient expressive power to achieve the specified behaviors. Perhaps surprisingly, some of these systems do not even require Turing completeness to be sufficiently expressive.

Building on a large variety of work by other scientists in the fields of DNA nanotechnology, chemistry and reconfigurable robotics, this thesis introduces several research contributions in the context of active self-assembly.

We show that simple primitives such as insertion and deletion are able to generate complex and interesting results such as the growth of a linear polymer in logarithmic time and the ability of a linear polymer to treadmill. To this end we developed a formal model for active-self assembly that is directly implementable with DNA molecules. We show that this model is computationally equivalent to a machine capable of producing strings that are stronger than regular languages and, at most, as strong as context-free grammars. This is a great advance in the theory of active self- assembly as prior models were either entirely theoretical or only implementable in the context of macro-scale robotics.

We developed a chain reaction method for the autonomous exponential growth of a linear DNA polymer. Our method is based on the insertion of molecules into the assembly, which generates two new insertion sites for every initial one employed. The building of a line in logarithmic time is a first step toward building a shape in logarithmic time. We demonstrate the first construction of a synthetic linear polymer that grows exponentially fast via insertion. We show that monomer molecules are converted into the polymer in logarithmic time via spectrofluorimetry and gel electrophoresis experiments. We also demonstrate the division of these polymers via the addition of a single DNA complex that competes with the insertion mechanism. This shows the growth of a population of polymers in logarithmic time. We characterize the DNA insertion mechanism that we utilize in Chapter 4. We experimentally demonstrate that we can control the kinetics of this re- action over at least seven orders of magnitude, by programming the sequences of DNA that initiate the reaction.

In addition, we review co-authored work on programming molecular robots using prescriptive landscapes of DNA origami; this was the first microscopic demonstration of programming a molec- ular robot to walk on a 2-dimensional surface. We developed a snapshot method for imaging these random walking molecular robots and a CAPTCHA-like analysis method for difficult-to-interpret imaging data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the region of self-organized criticality (SOC) interdependency between multi-agent system components exists and slight changes in near-neighbor interactions can break the balance of equally poised options leading to transitions in system order. In this region, frequency of events of differing magnitudes exhibits a power law distribution. The aim of this paper was to investigate whether a power law distribution characterized attacker-defender interactions in team sports. For this purpose we observed attacker and defender in a dyadic sub-phase of rugby union near the try line. Videogrammetry was used to capture players’ motion over time as player locations were digitized. Power laws were calculated for the rate of change of players’ relative position. Data revealed that three emergent patterns from dyadic system interactions (i.e., try; unsuccessful tackle; effective tackle) displayed a power law distribution. Results suggested that pattern forming dynamics dyads in rugby union exhibited SOC. It was concluded that rugby union dyads evolve in SOC regions suggesting that players’ decisions and actions are governed by local interactions rules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In John Frazer's seminal book An Evolutionary Architecture (1995), from which this essay is extracted, a fundamental approach is established for have natural systems can unfold mechanisms for negotiating the complex design space inherent in architectural systems. In this essay, which forms a critical part of the book, Frazer draws both correlations and distinctions from natural processes as emulated in design processes and form as active manifestations within natural systems. Form is seen as an evolving agent generated via the rules of descriptive genetic coding, functioning as a part of a metabolic environment. Frazer's process-model establishes the realm in which computation must manoeuvre to produce a valid solution space, including the operations of self-organisation, complexity and emergent behaviour. Addressing design as an authored practice, he extends the transference of 'creativity' from the explicit impression into form, to the investment of though, organisation and strategy in the computational processes which produce form. Frazer's text concentrates astutely on the practising of the evolutionary paradigm, the output of which postulates an architecture born of the relationships to dynamic environmental and socio-economic contexts, and realised through morphogenetic materialisation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We utilise the well-developed quantum decision models known to the QI community to create a higher order social decision making model. A simple Agent Based Model (ABM) of a society of agents with changing attitudes towards a social issue is presented, where the private attitudes of individuals in the system are represented using a geometric structure inspired by quantum theory. We track the changing attitudes of the members of that society, and their resulting propensities to act, or not, in a given social context. A number of new issues surrounding this "scaling up" of quantum decision theories are discussed, as well as new directions and opportunities.