911 resultados para Active and Reactive Power sharing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a robust nonlinear distributed controller design for islanded operation of microgrids in order to maintain active and reactive power balance. In this paper, microgrids are considered as inverter-dominated networks integrated with renewable energy sources (RESs) and battery energy storage systems (BESSs), where solar photovoltaic generators act as RESs and plug-in hybrid electric vehicles as BESSs to supply power into the grid. The proposed controller is designed by using partial feedback linearization and the robustness of this control scheme is ensured by considering structured uncertainties within the RESs and BESSs. An approach for modeling the uncertainties through the satisfaction of matching conditions is also provided in this paper. The proposed distributed control scheme requires information from local and neighboring generators to communicate with each other and the communication among RESs, BESSs, and control centers is developed by using the concept of the graph theory. Finally, the performance of the proposed robust controller is demonstrated on a test microgrid and simulation results indicate the superiority of the proposed scheme under different operating conditions as compared to a linear-quadratic-regulator-based controller.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a nonlinear backstepping controller is designed for three-phase grid-connected solar photovoltaic (PV) systems to share active and reactive power. A cascaded control structure is considered for the purpose of sharing appropriate amount of power. In this cascaded control structure, the dc-link voltage controller is designed for balancing the power flow within the system and the current controller is designed to shape the grid current into a pure sinusoidal waveform. In order to balance the power flow, it is always essential to maintain a constant voltage across the dc-link capacitor for which an incremental conductance (IC) method is used in this paper. This approach also ensures the operation of solar PV arrays at the maximum power point (MPP) under rapidly changing atmospheric conditions. The proposed current controller is designed to guarantee the current injection into the grid in such a way that the system operates at a power factor other than unity which is essential for sharing active and reactive power. The performance of the proposed backstepping approach is verified on a three-phase grid-connected PV system under different atmospheric conditions. Simulation results show the effectiveness of the proposed control scheme in terms of achieving desired control objectives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel power control strategy that decouples the active and reactive power for a synchronous generator connected to a power network. The proposed control paradigm considers the capacitance of the transmission line along with its resistance and reactance as-well. Moreover the proposed controller takes into account all cases of R-X relationships, thus allowing it to function in Virtual Power Plant (VPP) structures which operate at both medium voltage (MV) and low voltage (LV) levels. The independent control of active and reactive power is achieved through rotational transformations of the terminal voltages and currents at the synchronous generator's output. This paper details the control technique by first presenting the mathematical and electrical network analysis of the methodology and then successfully implementing the control using MATLAB-SIMULINK simulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The control paradigms of the distributed generation (DG) sources in the smart grid are realised by either utilising virtual power plant (VPP) or by employing MicroGrid structures. Both VPP and MicroGrid are presented with the problem of control of power flow between their comprising DG sources. This study depicts this issue for VPP and proposes a novel and improved universal active and reactive power flow controllers for three-phase pulse width modulated voltage source inverters (PWM-VSI) operating in the VPP environment. The proposed controller takes into account all cases of R-X relationship, thus allowing it to function in systems operating at high, medium (MV) and low-voltage (LV) levels. Also proposed control scheme for the first time in an inverter control takes into account the capacitance of the transmission line which is an important factor to accurately represent medium length transmission lines. This allows the proposed control scheme to be applied in VPP structures, where DG sources can operate at MV LV levels over a short/medium length transmission line. The authors also conducted small signal stability analysis of the proposed controller and compared it against the small signal study of the existing controllers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a method for power flow control between utility and microgrid through back-to-back converters, which facilitates desired real and reactive power flow between utility and microgrid. In the proposed control strategy, the system can run in two different modes depending on the power requirement in the microgrid. In mode-1, specified amount of real and reactive power are shared between the utility and the microgrid through the back-to-back converters. Mode-2 is invoked when the power that can be supplied by the DGs in the microgrid reaches its maximum limit. In such a case, the rest of the power demand of the microgrid has to be supplied by the utility. An arrangement between DGs in the microgrid is proposed to achieve load sharing in both grid connected and islanded modes. The back-to-back converters also provide total frequency isolation between the utility and the microgrid. It is shown that the voltage or frequency fluctuation in the utility side has no impact on voltage or power in microgrid side. Proper relay-breaker operation coordination is proposed during fault along with the blocking of the back-to-back converters for seamless resynchronization. Both impedance and motor type loads are considered to verify the system stability. The impact of dc side voltage fluctuation of the DGs and DG tripping on power sharing is also investigated. The efficacy of the proposed control ar-rangement has been validated through simulation for various operating conditions. The model of the microgrid power system is simulated in PSCAD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the stability of an autonomous microgrid with multiple distributed generators (DG) is studied through eigenvalue analysis. It is assumed that all the DGs are connected through Voltage Source Converter (VSC) and all connected loads are passive. The VSCs are controlled by state feedback controller to achieve desired voltage and current outputs that are decided by a droop controller. The state space models of each of the converters with its associated feedback are derived. These are then connected with the state space models of the droop, network and loads to form a homogeneous model, through which the eigenvalues are evaluated. The system stability is then investigated as a function of the droop controller real and reac-tive power coefficients. These observations are then verified through simulation studies using PSCAD/EMTDC. It will be shown that the simulation results closely agree with stability be-havior predicted by the eigenvalue analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes protection and control of a microgrid with converter interfaced micro sources. The proposed protection and control scheme consider both grid connected and autonomous operation of the microgrid. A protection scheme, capable of detecting faults effectively in both grid connected and islanded operations is proposed. The main challenge of the protection, due to current limiting state of the converters is overcome by using admittance relays. The relays operate according to the inverse time characteristic based on measured admittance of the line. The proposed scheme isolates the fault from both sides, while downstream side of the microgrid operates in islanding condition. Moreover faults can be detected in autonomous operation. In grid connected mode distributed generators (DG) supply the rated power while in absence of the grid, DGs share the entire power requirement proportional to rating based on output voltage angle droop control. The protection scheme ensures minimum load shedding with isolating the faulted network and DG control provides a smooth islanding and resynchronization operation. The efficacy of coordinated control and protection scheme has been validated through simulation for various operating conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses the control and protection of a microgrid that is connected to utility through back-to-back converters. The back-to-back converter connection facilitates bidirectional power flow between the utility and the microgrid. These converters can operate in two different modes–one in which a fixed amount of power is drawn from the utility and the other in which the microgrid power shortfall is supplied by the utility. In the case of a fault in the utility or microgrid side, the protection system should act not only to clear the fault but also to block the back-to-back converters such that its dc bus voltage does not fall during fault. Furthermore, a converter internal mechanism prevents it from supplying high current during a fault and this complicates the operation of a protection system. To overcome this, an admittance based relay scheme is proposed, which has an inverse time characteristic based on measured admittance of the line. The proposed protection and control schemes are able to ensure reliable operation of the microgrid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a methodology to address reactive power compensation using Evolutionary Particle Swarm Optimization (EPSO) technique programmed in the MATLAB environment. The main objective is to find the best operation point minimizing power losses with reactive power compensation, subjected to all operational constraints, namely full AC power flow equations, active and reactive power generation constraints. The methodology has been tested with the IEEE 14 bus test system demonstrating the ability and effectiveness of the proposed approach to handle the reactive power compensation problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a Unit Commitment model with reactive power compensation that has been solved by Genetic Algorithm (GA) optimization techniques. The GA has been developed a computational tools programmed/coded in MATLAB. The main objective is to find the best generations scheduling whose active power losses are minimal and the reactive power to be compensated, subjected to the power system technical constraints. Those are: full AC power flow equations, active and reactive power generation constraints. All constraints that have been represented in the objective function are weighted with a penalty factors. The IEEE 14-bus system has been used as test case to demonstrate the effectiveness of the proposed algorithm. Results and conclusions are dully drawn.