34 resultados para Actine
Resumo:
Le complexe actomyosine, formé de l’association de la myosine II avec les filaments d’actine, stabilise le cytosquelette d’actine et génère la contraction cellulaire nécessaire à plusieurs processus comme la motilité et l’apoptose dans les cellules non-musculaires. La myosine II est un hexamère formé d’une paire de chaînes lourdes (MHCs) et de deux paires de chaînes légères MLC20 et MLC17. La régulation de l’activité de la myosine II, c'est-à-dire son interaction avec les filaments d’actine, est directement liée à l’état de phosphorylation des MLC20, mais il reste beaucoup à découvrir sur l’implication des MHCs. Il existe trois isoformes de MHCs de myosine II, MHCIIA, MHCIIB et MHCIIC qui possèdent des fonctions à la fois communes et distinctes. Notre but est de mettre en évidence les différences de fonction entre les isoformes de myosine II, au niveau structurale, dans la stabilisation du cytosquelette d’actine, et au niveau de leur activité contractile, dans la génération des forces de tension. Nous nous sommes intéressés au rôle des isoformes des MHCs dans l’activité du complexe actomyosine qui est sollicité durant le processus de contraction cellulaire de l’apoptose. Dans quatre lignées cellulaires différentes, le traitement conjoint au TNFα et à la cycloheximide causait la contraction et le rétrécissement des cellules suivi de leur détachement du support de culture. Par Western blot, nous avons confirmé que la phosphorylation des MLC20 est augmentée suite au clivage de ROCK1 par la caspase-3, permettant ainsi l’interaction entre la myosine II et les filaments d’actine et par conséquent, la contraction des cellules apoptotiques. Cette contraction est bloquée par l’inhibition des caspases et de ROCK1. MHCIIA est dégradée suite à l’activation de la caspase-3 alors que MHCIIB n’est pas affectée. En utilisant une lignée cellulaire déficiente en MHCIIB, ou MHCIIB (-/-), nous avons observé que la contraction et le détachement cellulaires durant l’induction de l’apoptose se produisaient moins rapidement que dans la lignée de type sauvage (Wt) ce qui suggère que l’isoforme B est impliquée dans la contraction des cellules apoptotiques. Parallèlement, la kinase atypique PKCζ, qui phosphoryle MHCIIB et non MHCIIA, est activée durant l’apoptose. PKCζ joue un rôle important puisque son inhibition bloque la contraction des cellules apoptotiques. Par la suite, nous nous sommes intéressés à la modulation de la morphologie cellulaire par la myosine II. Les fibroblastes MHCIIB (-/-), présentent un large lamellipode dont la formation semble dû uniquement à l’absence de l’isoforme MHCIIB, alors que les fibroblastes Wt ont une morphologie cellulaire étoilée. La formation du lamellipode dans les fibroblastes MHCIIB (-/-) est caractérisée par l’association de la cortactine avec la membrane plasmique. L’observation en microscopie confocale nous indique que MHCIIA interagit avec la cortactine dans les fibroblastes Wt mais très peu dans les fibroblastes MHCIIB (-/-). Le bFGF active la voie des MAP kinases dans les fibroblastes Wt et MHCIIB (-/-) et induit des extensions cellulaires aberrantes dans les fibroblastes MHCIIB (-/-). Nos résultats montrent que l’implication de l’isoforme B de la myosine II dans la modulation de la morphologie cellulaire. L’ensemble de nos résultats participe à distinguer la fonction structurale et contractile de chacune des isoformes de myosine II dans la physiologie cellulaire.
Resumo:
Drak2 est un membre de la famille des protéines associées à la mort et c’est une sérine/thréonine kinase. Chez les souris mutantes nulles Drak2, les cellules T ne présentent aucune défectuosité apparente en apoptose induite par activation, après stimulation avec anti-CD3 et anti-CD28, mais ont un seuil de stimulation réduit, comparées aux cellules T de type sauvage (TS). Dans notre étude, l’analyse d’hybridation in situ a révélé que l’expression de Drak2 est ubiquiste au stade de la mi-gestation chez les embryons, suivie d’une expression plus focale dans les divers organes pendant la période périnatale et l’âge adulte, notamment dans le thymus, la rate, les ganglions lymphatiques, le cervelet, les noyaux suprachiasmatiques, la glande pituitaire, les lobes olfactifs, la médullaire surrénale, l’estomac, la peau et les testicules. Nous avons créé des souris transgéniques (Tg) Drak2 en utilisant le promoteur humain beta-actine. Ces souris Tg montraient des ratios normaux entre cellules T versus B et entre cellules CD4 versus CD8, mais leur cellularité et leur poids spléniques étaient inférieurs comparé aux souris de type sauvage. Après activation TCR, la réponse proliférative des cellules T Tg Drak2 était normale, même si leur production d’interleukine (IL)-2 et IL-4 mais non d’interféron-r était augmentée. Les cellules T Tg Drak2 activées ont démontré une apoptose significativement accrue en présence d’IL-2 exogène. Au niveau moléculaire, les cellules T Tg Drak2 ont manifesté une augmentation moins élevée des facteurs anti-apoptotiques durant l’activation; un tel changement a probablement rendu les cellules vulnérables aux attaques subséquentes d’IL-2. L’apoptose compromise dans les cellulesT Tg Drak2 a été associée à un nombre réduit de cellules T ayant le phénotype des cellules mémoires (CD62Llo) et avec des réactions secondaires réprimées des cellules T dans l’hypersensibilité de type différé. Ces résultats démontrent que Drak2 s’exprime dans le compartiment des cellules T mais n’est pas spécifique aux cellules T; et aussi qu’il joue des rôles déterminants dans l’apoptose des cellules T et dans le développement des cellules mémoires T. En outre, nous avons recherché le rôle de Drak2 dans la survie des cellules beta et le diabète. L’ARNm et la protéine Drak2 ont été rapidement induits dans les cellules beta de l’îlot après stimulation exogène par les cytokines inflammatoires ou les acides gras libres et qui est présente de façon endogène dans le diabète, qu’il soit de type 1 ou de type 2. La régulation positive de Drak2 a été accompagnée d’une apoptose accrue des cellules beta. L’apoptose des cellules beta provoquée par les stimuli en question a été inhibée par la chute de Drak2 en utilisant petit ARNi. Inversement, la surexpression de Drak2 Tg a mené à l’apoptose aggravée des cellules beta déclenchée par les stimuli. La surexpression de Drak2 dans les îlots a compromis l’augmentation des facteurs anti-apoptotiques, tels que Bcl-2, Bcl-xL et Flip, sur stimulation par la cytokine et les acides gras libres. De plus, les expériences in vivo ont démontré que les souris Tg Drak2 étaient sujettes au diabète de type 1 dans un modèle de diabète provoqué par de petites doses multiples de streptozotocine et qu’elles étaient aussi sujettes au diabète de type 2 dans un modèle d’obésité induite par la diète. Nos données montrent que Drak2 est défavorable à la survie des cellules beta. Nous avons aussi étudié la voie de transmission de Drak2. Nous avons trouvé que Drak2 purifiée pouvait phosphoryler p70S6 kinase dans une analyse kinase in vitro. Lasurexpression de Drak2 dans les cellules NIT-1 a entraîné l’augmentation de la phosphorylasation p70S6 kinase tandis que l’abaissement de Drak2 dans ces cellules a réduit la phosphorylation. Ces recherches mécanistes ont prouvé que p70S6 kinase était véritablement un substrat de Drak2 in vitro et in vivo. Cette étude a découvert les fonctions importantes de Drak2 dans l’homéostasie des cellules T et le diabète. Nous avons prouvé que p70S6 kinase était un substrat de Drak2. Nos résultats ont approfondi nos connaissances de Drak2 à l’intérieur des systèmes immunitaire et endocrinien. Certaines de nos conclusions, comme les rôles de Drak2 dans le développement des cellules mémoires T et la survie des cellules beta pourraient être explorées pour des applications cliniques dans les domaines de la transplantation et du diabète.
Resumo:
Le récepteur DcR3 (Decoy receptor 3) est un membre de la famille des récepteurs aux facteurs de nécrose tumorale (TNF). Il est fortement exprimé dans les tissus humains normaux ainsi que les tumeurs malignes. DcR3 est un récepteur pour trois ligands de la famille du TNF tels que FasL, LIGHT et TL1A. Étant une protéine soluble donc dépourvue de la portion transmembranaire et intracytoplasmique, le récepteur DcR3 est incapable d’effectuer une transduction de signal intracellulaire à la suite de son interaction avec ses ligands. De ce fait, DcR3 joue un rôle de compétiteur pour ces derniers, afin d’inhiber la signalisation via leurs récepteurs fonctionnels tels que Fas, HVEM/LTbetaR et DR3. Lors de nos précédentes études, nous avons pu démontrer, que DcR3 pouvaist moduler la fonction des cellules immunitaires, et aussi protéger la viabilité des îlots de Langerhans. À la suite de ces résultats, nous avons généré des souris DcR3 transgéniques (Tg) en utilisant le promoteur du gène β-actine humaine afin d’étudier plus amplement la fonction de ce récepteur. Les souris Tg DcR3 ont finalement développé le syndrome lupus-like (SLE) seulement après l’âge de 6 mois. Ces souris présentent une variété d'auto-anticorps comprenant des anticorps anti-noyaux et anti-ADN. Elles ont également manifesté des lésions rénales, cutanées, hépatiques et hématopoïétiques. Contrairement aux modèles de lupus murin lpr et gld, les souris DcR3 sont plus proche du SLE humain en terme de réponse immunitaire de type Th2 et de production d'anticorps d'anti-Sm. En péus, nous avons constaté que les cellules hématopoïétiques produisant DcR3 sont suffisantes pour causer ces pathologies. DcR3 peut agir en perturbant l’homéostasie des cellules T pour interférer avec la tolérance périphérique, et ainsi induire l'autoimmunité. Chez l'humain, nous avons détecté dans le sérum de patients SLE des niveaux élevés de la protéine DcR3. Chez certains patients, comme chez la souris, ces niveaux sont liés directement aux titres élevés d’IgE. Par conséquent, DcR3 peut représenter un facteur pathogénique important du SLE humain. L’étude des souris Tg DcR3, nous a permis aussi d’élucider le mécanisme de protection des îlots de Langerhans. Le blocage de la signalisation des ligands LIGHT et TL1A par DcR3 est impliqué dans une telle protection. D'ailleurs, nous avons identifié par ARN microarray quelques molécules en aval de cette interaction, qui peuvent jouer un rôle dans le mécanisme d’action. Nous avons par la suite confirmé que Adcyap1 et Bank1 joue un rôle critique dans la protection des îlots de Langerhans médiée par DcR3. Notre étude a ainsi élucidé le lien qui existe entre la signalisation apoptotique médiée par Fas/FasL et la pathogénèse du SLE humain. Donc, malgré l’absence de mutations génétiques sur Fas et FasL dans le cas de cette pathologie, DcR3 est capable de beoquer cette signalisation et provoquer le SLE chez l’humain. Ainsi, DcR3 peut simultanément interférer avec la signalisation des ligands LIGHT et TL1A et causer un phénotype plus complexe que les phénotypes résultant de la mutation de Fas ou de FasL chez certains patients. DcR3 peut également être utilisé comme paramètre diagnostique potentiel pour le SLE. Les découvertes du mécanisme de protection des îlots de Langerhans par DcR3 ouvrent la porte vers de nouveaux horizons afin d'explorer de nouvelles cibles thérapeutiques pour protéger la greffe d'îlots.
Resumo:
La fertilisation chez les plantes dépend de la livraison des cellules spermatiques contenues dans le pollen à l’ovule. Au contact du stigmate, le grain de pollen s’hydrate et forme une protubérance, le tube pollinique, chargé de livrer les noyaux spermatiques à l’ovule. Le tube pollinique est une cellule à croissance rapide, anisotrope et non autotrophe; ainsi tout au long de sa croissance à travers l’apoplaste du tissu pistillaire, le tube pollinique puise ses sources de carbohydrates et de minéraux du pistil. Ces éléments servent à la synthèse des constituants de la paroi qui seront acheminés par des vésicules de sécrétion jusqu’à l’apex du tube. Ce dernier doit aussi résister à des pressions mécaniques pour maintenir sa forme cylindrique et doit répondre à différents signaux directionnels pour pouvoir atteindre l’ovule. Mon projet de doctorat était de comprendre le rôle du cytosquelette dans la croissance anisotrope du tube pollinique et d’identifier les éléments responsables de sa croissance et de son guidage. Le cytosquelette du tube pollinique est composé des microfilaments d’actine et des microtubules. Pour assurer une bonne croissance des tubes polliniques in vitro, les carbohydrates et les éléments de croissance doivent être ajoutés au milieu à des concentrations bien spécifiques. J’ai donc optimisé les conditions de croissance du pollen d’Arabidopsis thaliana et de Camellia japonica qui ont été utilisés avec le pollen de Lilium longiflorum comme modèles pour mes expériences. J’ai développé une méthode rapide et efficace de fixation et de marquage du tube pollinique basée sur la technologie des microondes. J’ai aussi utilisé des outils pharmacologiques, mécaniques et moléculaires couplés à différentes techniques de microscopie pour comprendre le rôle du cytosquelette d’actine lors de la croissance et le tropisme du tube pollinique. J’ai trouvé que le cytosquelette d’actine et plus précisément l’anneau d’actine localisé dans la partie sub-apicale du tube est fortement impliqué dans la croissance et le maintien de l’architecture du tube à travers le contrôle de la livraison des vésicules de sécrétion. J’ai construit une chambre galvanotropique qui peut être montée sur un microscope inversé et qui sert à envoyer des signaux tropistiques bien précis à des tubes polliniques en croissance. J’ai trouvé que les filaments d’actine sont impliqués dans la capacité du tube pollinique à changer de direction. Ce comportement tropistique dépend de la concentration du calcium dans le milieu de croissance et du flux de calcium à travers des canaux calciques. Le gradient de calcium établi dans le tube pollinique affecte l’activité de certaines protéines qui se lient à l’actine et dont le rôle est la réorganisation des filaments d’actine. Parmi ces protéines, il y a celles de dépolymérisation de l’actine (ADF) dont deux spécifiquement exprimées dans le gamétophyte mâle d’Arabidopsis (ADF7 et ADF10). Par marquage avec des proteins fluorescents, j’ai trouvé que l’ADF7 et l’ADF10 ont des expressions différentielles pendant la microsporogenèse et la germination et croissance du tube pollinique et qu’elles partagent entre elles des rôles importants durant ces différents stades.
Resumo:
Projet de recherche réalisé en collaboration avec la section Biologie/ADN du Laboratoire de sciences judiciaires et de médecine légale (LSJML) de Montréal.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Le CD40 est un membre de la famille des récepteurs du facteur de nécrose tumorale ("Tumour necrosis factor", TNF), initialement identifié sur des cellules de carcinome de la vessie. L'interaction du CD40 avec son ligand (CD40L) est d'une importance cruciale pour le développement des cellules B et de la commutation d'isotype au cours de la réponse immunitaire acquise. L'expression du complexe CD40/CD40L était initialement cru d'être limiter aux cellules du système immunitaire, mais aujourd'hui il est bien connu que ce complexe est également exprimé sur les cellules du système circulatoire et vasculaire, et est impliqué dans diverses réactions inflammatoires; de sorte que le CD40L est maintenant considéré comme une molécule thrombo-inflammatoire prédictive des événements cardiovasculaires. Les plaquettes expriment constitutivement le CD40, alors que le CD40L n'est exprimé que suite à leur l'activation. Il est ensuite clivé en sa forme soluble (sCD40L) qui représente la majorité du sCD40L en circulation. Il fut démontré que le sCD40L influence l'activation plaquettaire mais son effet exact sur la fonction plaquettaire, ainsi que les mécanismes cellulaires et moléculaires sous-jacents à son action demeurent inconnus. Ainsi, ce projet a été entrepris dans le but d’adresser les objectifs spécifiques suivants: 1) évaluer les effets in vitro du sCD40L sur l'activation et l'agrégation plaquettaire; 2) identifier les récepteurs plaquettaires impliqués dans l’action du sCD40L; 3) élucider les voies signalétiques intracellulaires induits par le sCD40L; 4) évaluer les effets du sCD40L sur la formation de thrombus in vivo. Nous avons trouvé que le sCD40L augmente fortement l'activation et l'agrégation des plaquettes en réponse à de faibles concentrations d'agonistes. Les plaquettes humaines traitées avec une forme mutante du sCD40L qui n'interagit pas avec le CD40, et les plaquettes de souris déficientes en CD40 ne furent pas en mesure d'induire de telles réponses, indiquant que le récepteur principal du sCD40L au niveau des plaquettes est le CD40. En plus, nous avons identifié la présence de plusieurs membres de la famille du facteur associé du récepteur du TNF ("TNF receptor-associated factor", TRAF) dans les plaquettes et nous avons montré que seulement le TRAF2 s'associe avec le CD40 suite à la stimulation par le sCD40L. Nos résultats indiquent aussi que le sCD40L agisse sur les plaquettes au repos par l'entremise de deux voies signalétiques distinctes. La première voie implique l'activation de la petite GTPase Rac1 et de sa cible en aval, soit la protéine kinase p38 activée par le mitogène ("p38 mitogen-activated protein kinase", p38 MAPK ), menant au changement de forme plaquettaire et à la polymérisation de l'actine; alors que la deuxième voie implique l'activation de la cascade signalétique du NF-kB. Par ailleurs, à la suite d'une lésion artérielle induite par le chlorure de fer, le sCD40L exacerbe la formation de thrombus et l'infiltration leucocytaire au sein du thrombus dans les souris du type sauvage, mais pas chez les souris déficientes en CD40. En conclusion, ce projet a permis d'identifier pour la première fois deux voies signalétiques distinctes en aval du CD40 plaquettaire et a permis d'établir leur implication dans l'activation et l'agrégation plaquettaire en réponse au sCD40L. De manière plus importante, ce projet nous a permis d'établir un lien direct entre les niveaux élevés du sCD40L circulant et la formation de thrombus in vivo, tout en soulignant l'importance du CD40 dans ce processus. Par conséquent, l'axe CD40/CD40L joue un rôle important dans l'activation des plaquettes, les prédisposant à une thrombose accrue en réponse à une lésion vasculaire. Ces résultats peuvent expliquer en partie la corrélation entre les taux circulants élevés du sCD40L et l'incidence des maladies cardiovasculaires.
Resumo:
Une cellule se divise en deux par le processus de cytokinèse. Elle requiert la coordination de plusieurs composants pour éviter la formation des cellules potentiellement cancéreuses. Premièrement, un anneau contractile (AC) dépendant de l’actine et de Rho-GTP diminue le diamètre de la cellule jusqu’à la formation d’une structure plus stable indépendante de l’actine, l’anneau du midbody (AM) qui guide l’éventuelle séparation des cellules sœurs. Diaphanous (Dia) est une formine dépendante de Rho responsable de l’agencement des filaments d’actine non ramifiés qui se localise à l’AC et est essentielle à la cytokinèse. Nous avons étudié le rôle de Dia pendant la cytokinèse par microscopie de haute résolution en temps réel pour suivre le comportement dynamique des protéines fluorescentes (PF) dans des cellules de Drosophile S2. Une construction fonctionnelle de Dia-PF est recrutée à l’AC et l’AM indépendamment de l’actine mais est absente dans l’AM mature. Dia quitte l’AM au même temps où l’AM dévient indépendant d’actine. La déplétion de Dia par ARN interférant ralentit la constriction de l’AC, augmente les oscillations et, dans 70% des cas, les cellules échouent la cytokinèse pendant la constriction, suggérant que Dia a un rôle dans l’organisation de l’AC. LifeAct-PF, une sonde pour F-actine, dévoile une diminution des filaments d’actine spécifique à l’AC des cellules dépourvues de Dia pendant que Anilline-PF et Myosine-PF sont recrutées en puncta. Ces résultats soutiennent un modèle où Dia nuclée des filaments d’actine qui permettent l’organisation dynamique de l’AC et la perte de Dia régule la transition à l’AM stable indépendant d’actine.
Resumo:
Le muscle lisse endobronchique est l’un des acteurs principaux de l’asthme. La description de ces caractéristiques phénotypiques reste cependant très elliptique, notamment à cause de la difficulté inhérente à l’échantillonnage. Le cheval offre un large champ d’investigation en raison de sa taille et un modèle d’asthme pertinent en regard de la similitude entre asthme et souffle. La technique de culture et de caractérisation du muscle lisse a été mise au point à partir de muscle lisse trachéal. Ce modèle a ensuite été transposé et réalisé à partir de biopsies endobronchiques chez le cheval. Les cellules du muscle lisse ont été isolées, mises en culture puis caractérisées par immunofluorescence, cytométrie de flux et immunobuvardage. Le maintien du phénotype contractile en culture restant un défi dans l’établissement d’un modèle d’asthme réaliste. Suite à l’isolement des cellules musculaires lisses à partir de muscle lisse trachéal équin et leur mise en culture en présence de 10% de FBS pendant 7 passages, 96.4% des cellules expriment l’α-smooth muscle-actine (α-sm-actine), tandis que 83.8% et 77% expriment la desmine et la myosine respectivement. Les cellules musculaires lisses issues de biopsies endobronchiques expriment après 7 passages à 84% l’α-sm-actine, à 57% la desmine et 69% la myosine. Ces résultats ont été obtenus par immunofluorescence et immunobuvardage. Le pourcentage de cellules exprimant les protéines d’intérêt, tout comme l’intensité moyenne de fluorescence ne présentent pas de variation significative ni entre le 4ième et le 7ième passage, ni avec la caractérisation initiale, lors du premier passage. Cette étude suggère qu’il est possible de maintenir le phénotype contractile en culture sur plastique en présence de 10% de FBS, et que les biopsies endobronchiques sont un support d’étude valable pour de futures investigations concernant le rôle du muscle lisse et ses caractéristiques.
Resumo:
L’auto-incompatibilité (AI) est une barrière reproductive prézygotique qui permet aux pistils d’une fleur de rejeter leur propre pollen. Les systèmes d’AI peuvent prévenir l’autofertilisation et ainsi limiter l’inbreeding. Dans l’AI gamétophytique, le génotype du pollen détermine son propre phénotype d’incompatibilité, et dans ce système, les déterminants mâles et femelles de l’AI sont codés par un locus multigénique et multi-allélique désigné le locus S. Chez les Solanaceae, le déterminant femelle de l’AI est une glycoprotéine stylaire extracellulaire fortement polymorphique possédant une activité ribonucléase et désignée S-RNase. Les S-RNases montrent un patron caractéristique de deux régions hypervariables (HVa et HVb), responsables de leur détermination allélique, et cinq régions hautement conservées (C1 à C5) impliquées dans l’activité catalytique ou la stabilisation structurelle de ces protéines. Dans ce travail, nous avons investigué plusieurs caractéristiques des S-RNases et identifié un nouveau ligand potentiel aux S-RNases chez Solanum chacoense. L’objectif de notre première étude était l’élucidation du rôle de la région C4 des S-RNases. Afin de tester l’hypothèse selon laquelle la région C4 serait impliquée dans le repliement ou la stabilité des S-RNases, nous avons généré un mutant dans lequel les quatre résidus chargés présents en région C4 furent remplacés par des résidus glycine. Cette protéine mutante ne s’accumulant pas à des niveaux détectables, la région C4 semble bien avoir un rôle structurel. Afin de vérifier si C4 est impliquée dans une liaison avec une autre protéine, nous avons généré le mutant R115G, dans lequel un acide aminé chargé fût éliminé afin de réduire les affinités de liaison dans cette région. Ce mutant n’affectant pas le phénotype de rejet pollinique, il est peu probable que la région C4 soit impliquée dans la liaison des S-RNases avec un ligand ou leur pénétration à l’intérieur des tubes polliniques. Enfin, le mutant K113R, dans lequel le seul résidu lysine conservé parmi toutes les S-RNases fût remplacé par un résidu arginine, fût généré afin de vérifier si cette lysine était un site potentiel d’ubiquitination des S-RNases. Toutefois, la dégradation des S-RNases ne fût pas inhibée. Ces résultats indiquent que C4 joue probablement un rôle structurel de stabilisation des S-RNases. Dans une seconde étude, nous avons analysé le rôle de la glycosylation des S-RNases, dont un site, en région C2, est conservé parmi toutes les S-RNases. Afin d’évaluer la possibilité que les sucres conjugués constituent une cible potentielle d’ubiquitination, nous avons généré une S11-RNase dont l‘unique site de glycosylation en C2 fût éliminé. Ce mutant se comporte de manière semblable à une S11-RNase de type sauvage, démontrant que l’absence de glycosylation ne confère pas un phénotype de rejet constitutif du pollen. Afin de déterminer si l’introduction d’un sucre dans la région HVa de la S11-RNase pourrait affecter le rejet pollinique, nous avons généré un second mutant comportant un site additionnel de glycosylation dans la région HVa et une troisième construction qui comporte elle aussi ce nouveau site mais dont le site en région C2 fût éliminé. Le mutant comportant deux sites de glycosylation se comporte de manière semblable à une S11-RNase de type sauvage mais, de manière surprenante, le mutant uniquement glycosylé en région HVa peut aussi rejeter le pollen d’haplotype S13. Nous proposons que la forme non glycosylée de ce mutant constitue un allèle à double spécificité, semblable à un autre allèle à double spécificité préalablement décrit. Il est intéressant de noter que puisque ce phénotype n’est pas observé dans le mutant comportant deux sites de glycosylation, cela suggère que les S-RNases ne sont pas déglycosylées à l’intérieur du pollen. Dans la dernière étude, nous avons réalisé plusieurs expériences d’interactions protéine-protéine afin d’identifier de potentiels interactants polliniques avec les S-RNases. Nous avons démontré que eEF1A, un composant de la machinerie de traduction chez les eucaryotes, peut lier une S11-RNase immobilisée sur résine concanavaline A. Des analyses de type pull-down utilisant la protéine eEF1A de S. chacoense étiquetée avec GST confirment cette interaction. Nous avons aussi montré que la liaison, préalablement constatée, entre eEF1A et l’actine est stimulée en présence de la S11-RNase, bien que cette dernière ne puisse directement lier l’actine. Enfin, nous avons constaté que dans les tubes polliniques incompatibles, l’actine adopte une structure agrégée qui co-localise avec les S-RNases. Ces résultats suggèrent que la liaison entre eEF1A et les S-RNases pourrait constituer un potentiel lien fonctionnel entre les S-RNases et l’altération du cytosquelette d’actine observée lors des réactions d’AI. Par ailleurs, si cette liaison est en mesure de titrer les S-RNases disponibles à l’intérieur du tube pollinique, ce mécanisme pourrait expliquer pourquoi des quantités minimales ou « seuils » de S-RNases sont nécessaires au déclenchement des réactions d’AI.
Resumo:
À l’intérieur de la cellule sillonnent d’innombrables molécules, certaines par diffusion et d’autres sur des routes moléculaires éphémères, empruntées selon les directives spécifiques de protéines responsables du trafic intracellulaire. Parmi celles-ci, on compte les sorting nexins, qui déterminent le sort de plusieurs types de protéine, comme les récepteurs, en les guidant soit vers des voies de dégradation ou de recyclage. À ce jour, il existe 33 membres des sorting nexins (Snx1-33), tous munies du domaine PX (PHOX-homology). Le domaine PX confère aux sorting nexins la capacité de détecter la présence de phosphatidylinositol phosphates (PIP), sur la surface des membranes lipidiques (ex : membrane cytoplasmique ou vésiculaire). Ces PIPs, produits de façon spécifique et transitoire, recrutent des protéines nécessaires à la progression de processus cellulaires. Par exemple, lorsqu’un récepteur est internalisé par endocytose, la région avoisinante de la membrane cytoplasmique devient occupée par PI(4,5)P2. Ceci engendre le recrutement de SNX9, qui permet la progression de l’endocytose en faisant un lien entre le cytoskelette et le complexe d’endocytose. Les recherches exposées dans cette thèse sont une description fonctionnelle de deux sorting nexins peux connues, Snx11 et Snx30. Le rôle de chacun de ces gènes a été étudié durant l’embryogenèse de la grenouille (Xenopus laevis). Suite aux résultats in vivo, une approche biomoléculaire et de culture cellulaire a été employée pour approfondir nos connaissances. Cet ouvrage démontre que Snx11 est impliqué dans le développement des somites et dans la polymérisation de l’actine. De plus, Snx11 semble influencer le recyclage de récepteurs membranaires indépendamment de l’actine. Ainsi, Snx11 pourrait jouer deux rôles intracellulaires : une régulation actine-dépendante du milieu extracellulaire et le triage de récepteurs actine-indépendant. De son côté, Snx30 est impliqué dans la différentiation cardiaque précoce par l’inhibition de la voie Wnt/β-catenin, une étape nécessaire à l’engagement d’une population de cellules du mésoderme à la ligné cardiaque. L’expression de Snx30 chez le Xénope coïncide avec cette période critique de spécification du mésoderme et le knockdown suscite des malformations cardiaques ainsi qu’à d’autres tissus dérivés du mésoderme et de l’endoderme. Cet ouvrage fournit une base pour des études futures sur Snx11 et Snx30. Ces protéines ont un impact subtil sur des voies de signalisation spécifiques. Ces caractéristiques pourraient être exploitées à des fins thérapeutiques puisque l’effet d’une interférence avec leurs fonctions pourrait être suffisant pour rétablir un déséquilibre cellulaire pathologique tout en minimisant les effets secondaires.
Pro-inflammatory and angiogenic activities of VEGF and angiopoietins in murine sponge/Matrigel model
Resumo:
La dérégulation de la formation et l'intégrité des vaisseaux sanguins peut conduire à un état pathologique tel qu’observé dans de nombreuses maladies ischémiques telles que: la croissance de tumeur solide, l’arthrite rhumatoïde, le psoriasis, les rétinopathies et l'athérosclérose. Par conséquent, la possibilité de moduler l'angiogenèse régionale chez les patients souffrant d'ischémie est cliniquement pertinente. Un élément clé dans l'induction de l'angiogenèse pathologique est une inflammation qui précède et accompagne la formation des nouveaux vaisseaux. Ce phénomène est démontré par l'augmentation de la perméabilité vasculaire et le recrutement de monocytes/ macrophages et cellules polynucléaires (neutrophiles). En collaboration avec d'autres groupes, nous avons montré que différents facteurs de croissance tels que le facteur de croissance endothélial vasculaire et les angiopoïétines peuvent non seulement promouvoir l'angiogenèse mais aussi induire diverses étapes connexes au processus de la réaction inflammatoire, y compris la synthèse et la libération des médiateurs inflammatoires et la migration des neutrophiles. Les objectifs de notre étude étaient d'adresser si le vascular endothelial growth factor (VEGF) et les angiopoïétines (Ang1 et Ang2) sont capables de promouvoir la formation des nouveaux vaisseaux sanguins au fil du temps et d'identifier la présence de différentes cellules inflammatoires dans ce processus. Des éponges d'alcool polyvinylique stérilisées et imbibées de Matrigel appauvri en facteur de croissance (contenant PBS, VEGF, Ang1 ou Ang2 (200 ng/200 μl)) ont été insérées sous la peau de souris C57/Bl6 anesthésiées. Les éponges ont ensuite été retirées aux jours 4, 7, 14 ou 21 après la procédure pour des analyses histologiques, immunohistologiques et cytométriques. La formation des nouveaux vaisseaux a été validée par la coloration au Trichrome de Masson et des analyses histologiques et immunohistologiques contre les cellules endothéliales (anti-CD31). De plus, la maturation des vaisseaux a été démontrée par la coloration séquentielle contre les cellules endothéliales (anti-CD31) et musculaires lisses (anti-alpha-actine). Nous avons effectué la même procédure pour caractériser le recrutement de neutrophiles (anti-MPO), et de macrophages (anti-F4/80). Afin de mieux délimiter la présence de différents sous-ensembles de leucocytes recrutés dans les éponges, nous avons utilisé une technique de cytométrie en flux sur des préparations de cellules isolées à partir de ces éponges. Nous avons observé que le VEGF et les angiopoïétines favorisent le recrutement de cellules endothéliales et la formation de nouveaux vaisseaux plus rapidement qu’en présence de PBS. Une fois formé au jour 7, ces nouveaux vaisseaux restent stables en nombre, et ne subissent pas une réorganisation importante de leur surface. Ces vaisseaux maturent grâce au recrutement et au recouvrement par les cellules musculaires lisses des néovaisseaux. En outre, le microenvironnement angiogénique est composé de cellules inflammatoires, principalement de neutrophiles, macrophages et quelques cellules de type B et T. Donc, le VEGF, l’Ang1 et l’Ang2 induisent séparément la formation et la stabilisation de nouveaux vaisseaux sanguins, ainsi que le recrutement de cellules inflammatoires avec des puissances différentes et une action temps-dépendante dans un modèle d’éponge/Matrigel.