942 resultados para Acquisition system
Resumo:
This paper presents a low cost but high resolution retinal image acquisition system of the human eye. The images acquired by a CMOS image sensor are communicated through the Universal Serial Bus (USB) interface to a personal computer for viewing and further processing. The image acquisition time was estimated to be 2.5 seconds. This system can also be used in telemedicine applications.
Resumo:
针对高流强粒子束与绝缘毛细管相互作用的特点,设计制作了一套64通道一维位置灵敏电流分布探测器及其配套的数据获取系统,该探测器可分辨最小直径为1mm的束斑,通过数据获取系统可实现可视化自动数据采集。用2nA和200—2000eV电子对探测器进行了定标,并用10μA和2000eV的电子束穿越锥形毛细管后的出射电子,对探测器及数据获取系统进行测试,获得了出射粒子的位置分布谱及能量信息。
Resumo:
The implementation of an accurate and reliable data acquisition system is the first step to develope a good control system. This data acquisition should provide valuable data readings, not only for control purposes but also for applications in different research areas.
Resumo:
This text describes a real data acquisition and identification system implemented in a soilless greenhouse located at the University of Algarve (south of Portugal). Using the Real Time Workshop, Simulink, Matlab and the C programming language a system was developed to perform real-time data acquisition from a set of sensors.
Resumo:
A real-time data acquisition and identification system implemented in a soil-less greenhouse located in the south of Portugal is described. The system performs real-time data acquisition from a set of sensors connected to a data logger.
Resumo:
A programmable data acquisition system to allow novel use of meteorological radiosondes for atmospheric science measurements is described. In its basic form it supports four analogue inputs at 16 bit resolution, and up to two further inputs at lower resolution configurable instead for digital instruments. It also provides multiple instrument power supplies (+8V, +16V, +5V and -8V) from the 9V radiosonde battery. During a balloon flight encountering air temperatures from +17°C to -66°C, the worst case voltage drift in the 5V unipolar digitisation circuitry was 20mV. The system liberates a new range of low cost atmospheric research measurements, by utilising radiosondes routinely launched internationally for weather forecasting purposes. No additional receiving equipment is required. Comparisons between the specially instrumented and standard meteorological radiosondes show negligible effect of the additional instrumentation on the standard meteorological data.
Resumo:
The TCABR data analysis and acquisition system has been upgraded to support a joint research programme using remote participation technologies. The architecture of the new system uses Java language as programming environment. Since application parameters and hardware in a joint experiment are complex with a large variability of components, requirements and specification solutions need to be flexible and modular, independent from operating system and computer architecture. To describe and organize the information on all the components and the connections among them, systems are developed using the extensible Markup Language (XML) technology. The communication between clients and servers uses remote procedure call (RPC) based on the XML (RPC-XML technology). The integration among Java language, XML and RPC-XML technologies allows to develop easily a standard data and communication access layer between users and laboratories using common software libraries and Web application. The libraries allow data retrieval using the same methods for all user laboratories in the joint collaboration, and the Web application allows a simple graphical user interface (GUI) access. The TCABR tokamak team in collaboration with the IPFN (Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa) is implementing this remote participation technologies. The first version was tested at the Joint Experiment on TCABR (TCABRJE), a Host Laboratory Experiment, organized in cooperation with the IAEA (International Atomic Energy Agency) in the framework of the IAEA Coordinated Research Project (CRP) on ""Joint Research Using Small Tokamaks"". (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Each plasma physics laboratory has a proprietary scheme to control and data acquisition system. Usually, it is different from one laboratory to another. It means that each laboratory has its own way to control the experiment and retrieving data from the database. Fusion research relies to a great extent on international collaboration and this private system makes it difficult to follow the work remotely. The TCABR data analysis and acquisition system has been upgraded to support a joint research programme using remote participation technologies. The choice of MDSplus (Model Driven System plus) is proved by the fact that it is widely utilized, and the scientists from different institutions may use the same system in different experiments in different tokamaks without the need to know how each system treats its acquisition system and data analysis. Another important point is the fact that the MDSplus has a library system that allows communication between different types of language (JAVA, Fortran, C, C++, Python) and programs such as MATLAB, IDL, OCTAVE. In the case of tokamak TCABR interfaces (object of this paper) between the system already in use and MDSplus were developed, instead of using the MDSplus at all stages, from the control, and data acquisition to the data analysis. This was done in the way to preserve a complex system already in operation and otherwise it would take a long time to migrate. This implementation also allows add new components using the MDSplus fully at all stages. (c) 2012 Elsevier B.V. All rights reserved.