974 resultados para Acoustic spectrograms
Resumo:
The work described in this technical report is part of an ongoing project at QUT to build practical tools for the manipulation, analysis and visualisation of recordings of the natural environment. This report describes the algorithm we use to cluster the spectra in a spectrogram. The report begins with a brief description of the signal processing that prepares the spectrograms.
Resumo:
Acoustic recordings of the environment are an important aid to ecologists monitoring biodiversity and environmental health. However, rapid advances in recording technology, storage and computing make it possible to accumulate thousands of hours of recordings, of which, ecologists can only listen to a small fraction. The big-data challenge is to visualize the content of long-duration audio recordings on multiple scales, from hours, days, months to years. The visualization should facilitate navigation and yield ecologically meaningful information. Our approach is to extract (at one minute resolution) acoustic indices which reflect content of ecological interest. An acoustic index is a statistic that summarizes some aspect of the distribution of acoustic energy in a recording. We combine indices to produce false-colour images that reveal acoustic content and facilitate navigation through recordings that are months or even years in duration.
Resumo:
This technical report is concerned with one aspect of environmental monitoring—the detection and analysis of acoustic events in sound recordings of the environment. Sound recordings offer ecologists the advantage of cheaper and increased sampling but make available so much data that automated analysis becomes essential. The report describes a number of tools for automated analysis of recordings, including noise removal from spectrograms, acoustic event detection, event pattern recognition, spectral peak tracking, syntactic pattern recognition applied to call syllables, and oscillation detection. These algorithms are applied to a number of animal call recognition tasks, chosen because they illustrate quite different modes of analysis: (1) the detection of diffuse events caused by wind and rain, which are frequent contaminants of recordings of the terrestrial environment; (2) the detection of bird and calls; and (3) the preparation of acoustic maps for whole ecosystem analysis. This last task utilises the temporal distribution of events over a daily, monthly or yearly cycle.
Resumo:
The work described in this technical report is part of an ongoing project to build practical tools for the manipulation, analysis and visualisation of recordings of the natural environment. This report describes the methods we use to remove background noise from spectrograms. It updates techniques previously described in Towsey and Planitz (2011), Technical report: acoustic analysis of the natural environment, downloadable from: http://eprints.qut.edu.au/41131/. It also describes noise removal from wave-forms, a technique not described in the above 2011 technical report.
Resumo:
Acoustic sensing is a promising approach to scaling faunal biodiversity monitoring. Scaling the analysis of audio collected by acoustic sensors is a big data problem. Standard approaches for dealing with big acoustic data include automated recognition and crowd based analysis. Automatic methods are fast at processing but hard to rigorously design, whilst manual methods are accurate but slow at processing. In particular, manual methods of acoustic data analysis are constrained by a 1:1 time relationship between the data and its analysts. This constraint is the inherent need to listen to the audio data. This paper demonstrates how the efficiency of crowd sourced sound analysis can be increased by an order of magnitude through the visual inspection of audio visualized as spectrograms. Experimental data suggests that an analysis speedup of 12× is obtainable for suitable types of acoustic analysis, given that only spectrograms are shown.
Resumo:
Interpreting acoustic recordings of the natural environment is an increasingly important technique for ecologists wishing to monitor terrestrial ecosystems. Technological advances make it possible to accumulate many more recordings than can be listened to or interpreted, thereby necessitating automated assistance to identify elements in the soundscape. In this paper we examine the problem of estimating avian species richness by sampling from very long acoustic recordings. We work with data recorded under natural conditions and with all the attendant problems of undefined and unconstrained acoustic content (such as wind, rain, traffic, etc.) which can mask content of interest (in our case, bird calls). We describe 14 acoustic indices calculated at one minute resolution for the duration of a 24 hour recording. An acoustic index is a statistic that summarizes some aspect of the structure and distribution of acoustic energy and information in a recording. Some of the indices we calculate are standard (e.g. signal-to-noise ratio), some have been reported useful for the detection of bioacoustic activity (e.g. temporal and spectral entropies) and some are directed to avian sources (spectral persistence of whistles). We rank the one minute segments of a 24 hour recording in descending order according to an "acoustic richness" score which is derived from a single index or a weighted combination of two or more. We describe combinations of indices which lead to more efficient estimates of species richness than random sampling from the same recording, where efficiency is defined as total species identified for given listening effort. Using random sampling, we achieve a 53% increase in species recognized over traditional field surveys and an increase of 87% using combinations of indices to direct the sampling. We also demonstrate how combinations of the same indices can be used to detect long duration acoustic events (such as heavy rain and cicada chorus) and to construct long duration (24 h) spectrograms.
Resumo:
Environmental sensors collect massive amounts of audio data. This thesis investigates computational methods to support human analysts in identifying faunal vocalisations from that audio. A series of experiments was conducted to trial the effectiveness of novel user interfaces. This research examines the rapid scanning of spectrograms, decision support tools for users, and cleaning methods for folksonomies. Together, these investigations demonstrate that providing computational support to human analysts increases their efficiency and accuracy; this allows bioacoustics projects to efficiently utilise their valuable human analysts.
Resumo:
Bioacoustic monitoring has become a significant research topic for species diversity conservation. Due to the development of sensing techniques, acoustic sensors are widely deployed in the field to record animal sounds over a large spatial and temporal scale. With large volumes of collected audio data, it is essential to develop semi-automatic or automatic techniques to analyse the data. This can help ecologists make decisions on how to protect and promote the species diversity. This paper presents generic features to characterize a range of bird species for vocalisation retrieval. In the implementation, audio recordings are first converted to spectrograms using short-time Fourier transform, then a ridge detection method is applied to the spectrogram for detecting points of interest. Based on the detected points, a new region representation are explored for describing various bird vocalisations and a local descriptor including temporal entropy, frequency bin entropy and histogram of counts of four ridge directions is calculated for each sub-region. To speed up the retrieval process, indexing is carried out and the retrieved results are ranked according to similarity scores. The experiment results show that our proposed feature set can achieve 0.71 in term of retrieval success rate which outperforms spectral ridge features alone (0.55) and Mel frequency cepstral coefficients (0.36).
Resumo:
Acoustic classification of anurans (frogs) has received increasing attention for its promising application in biological and environment studies. In this study, a novel feature extraction method for frog call classification is presented based on the analysis of spectrograms. The frog calls are first automatically segmented into syllables. Then, spectral peak tracks are extracted to separate desired signal (frog calls) from background noise. The spectral peak tracks are used to extract various syllable features, including: syllable duration, dominant frequency, oscillation rate, frequency modulation, and energy modulation. Finally, a k-nearest neighbor classifier is used for classifying frog calls based on the results of principal component analysis. The experiment results show that syllable features can achieve an average classification accuracy of 90.5% which outperforms Mel-frequency cepstral coefficients features (79.0%).
Resumo:
Acoustic recordings play an increasingly important role in monitoring terrestrial and aquatic environments. However, rapid advances in technology make it possible to accumulate thousands of hours of recordings, more than ecologists can ever listen to. Our approach to this big-data challenge is to visualize the content of long-duration audio recordings on multiple scales, from minutes, hours, days to years. The visualization should facilitate navigation and yield ecologically meaningful information prior to listening to the audio. To construct images, we calculate acoustic indices, statistics that describe the distribution of acoustic energy and reflect content of ecological interest. We combine various indices to produce false-color spectrogram images that reveal acoustic content and facilitate navigation. The technical challenge we investigate in this work is how to navigate recordings that are days or even months in duration. We introduce a method of zooming through multiple temporal scales, analogous to Google Maps. However, the “landscape” to be navigated is not geographical and not therefore intrinsically visual, but rather a graphical representation of the underlying audio. We describe solutions to navigating spectrograms that range over three orders of magnitude of temporal scale. We make three sets of observations: 1. We determine that at least ten intermediate scale steps are required to zoom over three orders of magnitude of temporal scale; 2. We determine that three different visual representations are required to cover the range of temporal scales; 3. We present a solution to the problem of maintaining visual continuity when stepping between different visual representations. Finally, we demonstrate the utility of the approach with four case studies.
Resumo:
The requirement to monitor the rapid pace of environmental change due to global warming and to human development is producing large volumes of data but placing much stress on the capacity of ecologists to store, analyse and visualise that data. To date, much of the data has been provided by low level sensors monitoring soil moisture, dissolved nutrients, light intensity, gas composition and the like. However, a significant part of an ecologist’s work is to obtain information about species diversity, distributions and relationships. This task typically requires the physical presence of an ecologist in the field, listening and watching for species of interest. It is an extremely difficult task to automate because of the higher order difficulties in bandwidth, data management and intelligent analysis if one wishes to emulate the highly trained eyes and ears of an ecologist. This paper is concerned with just one part of the bigger challenge of environmental monitoring – the acquisition and analysis of acoustic recordings of the environment. Our intention is to provide helpful tools to ecologists – tools that apply information technologies and computational technologies to all aspects of the acoustic environment. The on-line system which we are building in conjunction with ecologists offers an integrated approach to recording, data management and analysis. The ecologists we work with have different requirements and therefore we have adopted the toolbox approach, that is, we offer a number of different web services that can be concatenated according to need. In particular, one group of ecologists is concerned with identifying the presence or absence of species and their distributions in time and space. Another group, motivated by legislative requirements for measuring habitat condition, are interested in summary indices of environmental health. In both case, the key issues are scalability and automation.
Resumo:
The process of structural health monitoring (SHM) involves monitoring a structure over a period of time using appropriate sensors, extracting damage sensitive features from the measurements made by the sensors and analysing these features to determine the current state of the structure. Various techniques are available for structural health monitoring of structures and acoustic emission (AE) is one technique that is finding an increasing use. Acoustic emission waves are the stress waves generated by the mechanical deformation of materials. AE waves produced inside a structure can be recorded by means of sensors attached on the surface. Analysis of these recorded signals can locate and assess the extent of damage. This paper describes preliminary studies on the application of AE technique for health monitoring of bridge structures. Crack initiation or structural damage will result in wave propagation in solid and this can take place in various forms. Propagation of these waves is likely to be affected by the dimensions, surface properties and shape of the specimen. This, in turn, will affect source localization. Various laboratory test results will be presented on source localization, using pencil lead break tests. The results from the tests can be expected to aid in enhancement of knowledge of acoustic emission process and development of effective bridge structure diagnostics system.