937 resultados para Acoustic emissions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrasonic acoustic emission (UAE) in trees is often related to collapsing water columns in the flow path as a result of tensions that are too strong (cavitation). However, in a decibel (dB) range below that associated with cavitation, a close relationship was found between UAE intensities and stem radius changes. • UAE was continuously recorded on the stems of mature field-grown trees of Scots pine (Pinus sylvestris) and pubescent oak (Quercus pubescens) at a dry inner-Alpine site in Switzerland over two seasons. The averaged 20-Hz records were related to microclimatic conditions in air and soil, sap-flow rates and stem-radius fluctuations de-trended for growth (ΔW). • Within a low-dB range (27 ± 1 dB), UAE regularly increased and decreased in a diurnal rhythm in parallel with ΔW on cloudy days and at night. These low-dB emissions were interrupted by UAE abruptly switching between the low-dB range and a high-dB range (36 ± 1 dB) on clear, sunny days, corresponding to the widely supported interpretation of UAE as sound from cavitations. • It is hypothesized that the low-dB signals in drought-stressed trees are caused by respiration and/or cambial growth as these physiological activities are tissue water-content dependent and have been shown to produce courses of CO2 efflux similar to our courses of ΔW and low-dB UAE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Engine developers are putting more and more emphasis on the research of maximum thermal and mechanical efficiency in the recent years. Research advances have proven the effectiveness of downsized, turbocharged and direct injection concepts, applied to gasoline combustion systems, to reduce the overall fuel consumption while respecting exhaust emissions limits. These new technologies require more complex engine control units. The sound emitted from a mechanical system encloses many information related to its operating condition and it can be used for control and diagnostic purposes. The thesis shows how the functions carried out from different and specific sensors usually present on-board, can be executed, at the same time, using only one multifunction sensor based on low-cost microphone technology. A theoretical background about sound and signal processing is provided in chapter 1. In modern turbocharged downsized GDI engines, the achievement of maximum thermal efficiency is precluded by the occurrence of knock. Knock emits an unmistakable sound perceived by the human ear like a clink. In chapter 2, the possibility of using this characteristic sound for knock control propose, starting from first experimental assessment tests, to the implementation in a real, production-type engine control unit will be shown. Chapter 3 focus is on misfire detection. Putting emphasis on the low frequency domain of the engine sound spectrum, features related to each combustion cycle of each cylinder can be identified and isolated. An innovative approach to misfire detection, which presents the advantage of not being affected by the road and driveline conditions is introduced. A preliminary study of air path leak detection techniques based on acoustic emissions analysis has been developed, and the first experimental results are shown in chapter 4. Finally, in chapter 5, an innovative detection methodology, based on engine vibration analysis, that can provide useful information about combustion phase is reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acoustic Emission (AE) monitoring can be used to detect the presence of damage as well as determine its location in Structural Health Monitoring (SHM) applications. Information on the time difference of the signal generated by the damage event arriving at different sensors is essential in performing localization. This makes the time of arrival (ToA) an important piece of information to retrieve from the AE signal. Generally, this is determined using statistical methods such as the Akaike Information Criterion (AIC) which is particularly prone to errors in the presence of noise. And given that the structures of interest are surrounded with harsh environments, a way to accurately estimate the arrival time in such noisy scenarios is of particular interest. In this work, two new methods are presented to estimate the arrival times of AE signals which are based on Machine Learning. Inspired by great results in the field, two models are presented which are Deep Learning models - a subset of machine learning. They are based on Convolutional Neural Network (CNN) and Capsule Neural Network (CapsNet). The primary advantage of such models is that they do not require the user to pre-define selected features but only require raw data to be given and the models establish non-linear relationships between the inputs and outputs. The performance of the models is evaluated using AE signals generated by a custom ray-tracing algorithm by propagating them on an aluminium plate and compared to AIC. It was found that the relative error in estimation on the test set was < 5% for the models compared to around 45% of AIC. The testing process was further continued by preparing an experimental setup and acquiring real AE signals to test on. Similar performances were observed where the two models not only outperform AIC by more than a magnitude in their average errors but also they were shown to be a lot more robust as compared to AIC which fails in the presence of noise.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Industrial, electrical power generation, and transportation systems, to name but a few, rely heavily on power electronics to control and convert electrical power. Each of these systems, when encountering an unexpected failure, can cause significant financial losses, or even an emergency. A condition monitoring system would help to alleviate these concerns, but for the time being, there is no generally accepted and widely adopted method for power electronics. Acoustic emission is used as a failure precursor in many applications, but it has not been studied in power electronics so far. In this doctoral dissertation, observations of acoustic emission in power semiconductor components are presented. The acoustic emissions are caused by the switching operation and failure of power transistors. Three types of acoustic emission are observed. Furthermore, aspects related to the measurement and detection of acoustic phenomena are discussed. These include sensor performance and mechanical construction of experimental setups. The results presented in this dissertation are the outset of a research program where it will be determined whether an acoustic-emission-based condition monitoring method can be developed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work uses a monitoring system based on a PC platform, where the acoustic emission and electric power signals generated during the grinding process are used to investigate superficial burning occurrence in a surface grinding operation using two types of steel, three grinding conditions and an Al203 vitrified grinding wheel. Acoustic emission signals on the workpiece and grinding power were measured during a surface plunge operation until the grinding burn happened. From the results the standard deviation of the acoustic emission signal and the maximum electric power were calculated for each grinding pass. The proposed DPO parameter is the product between the power level and acoustic emission standard deviation. The results show that both signals can be used for burning detection, and the parameter DPO is the best indicator for the burning studied in this work. This can be explained by the high dispersion of the acoustic emission RMS level associated to the high power consumption when the grinding wheel lose its sharpness.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An artificial neural network (ANN) approach is proposed for the detection of workpiece `burn', the undesirable change in metallurgical properties of the material produced by overly aggressive or otherwise inappropriate grinding. The grinding acoustic emission (AE) signals for 52100 bearing steel were collected and digested to extract feature vectors that appear to be suitable for ANN processing. Two feature vectors are represented: one concerning band power, kurtosis and skew; and the other autoregressive (AR) coefficients. The result (burn or no-burn) of the signals was identified on the basis of hardness and profile tests after grinding. The trained neural network works remarkably well for burn detection. Other signal-processing approaches are also discussed, and among them the constant false-alarm rate (CFAR) power law and the mean-value deviance (MVD) prove useful.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Piezoelectric composite, made from ferroelectric ceramic lead zirconate titanate (PZT) and vegetable based polyurethane (PU) polymer, was doped with a semiconductor filler, graphite. The resulting composite (PZT/C/PU) with 49/1/50- vol. % composition could be poled at lower field and shorter time due to the increased conductivity of the polymer phase following the introduction of graphite. The PZT/C/PU composite showed higher pyroelectric coefficient in comparison with the undoped PZT/PU composite with 50/50-vol. % composition. Also, the PZT/C/PU composite has shown the ability to detect both extensional and flexural modes of simulated acoustic emission (AE) at a distance up to 8.0 m from the source, thus indicating that it may be used for detection of structural damages.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Grinding process is usually the last finishing process of a precision component in the manufacturing industries. This process is utilized for manufacturing parts of different materials, so it demands results such as low roughness, dimensional and shape error control, optimum tool-life, with minimum cost and time. Damages on the parts are very expensive since the previous processes and the grinding itself are useless when the part is damaged in this stage. This work aims to investigate the efficiency of digital signal processing tools of acoustic emission signals in order to detect thermal damages in grinding process. To accomplish such a goal, an experimental work was carried out for 15 runs in a surface grinding machine operating with an aluminum oxide grinding wheel and ABNT 1045 e VC131 steels. The acoustic emission signals were acquired from a fixed sensor placed on the workpiece holder. A high sampling rate acquisition system at 2.5 MHz was used to collect the raw acoustic emission instead of root mean square value usually employed. In each test AE data was analyzed off-line, with results compared to inspection of each workpiece for burn and other metallurgical anomaly. A number of statistical signal processing tools have been evaluated.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Composites made of calcium modified lead titanate ceramic powder and poly (ether-ether-ketone) high performance polymer matrix were prepared in the film form using a hot press. The acoustic and electromechanical properties of the composites have been determined using the ultrasonic immersion technique and piezoelectric spectroscopy, respectively. The composite film with 60 - 40 vol.% PTCa/PEEK was tested as acoustic emission detector. Preliminary results shown that the piezo composite can be used as sensor to evaluate the behavior of materials.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work aims to investigate the efficiency of digital signal processing tools of acoustic emission signals in order to detect thermal damages in grinding processes. To accomplish such a goal, an experimental work was carried out for 15 runs in a surface grinding machine operating with an aluminum oxide grinding wheel and ABNT 1045 Steel as work material. The acoustic emission signals were acquired from a fixed sensor placed on the workpiece holder. A high sampling rate data acquisition system working at 2.5 MHz was used to collect the raw acoustic emission instead of the root mean square value usually employed. Many statistical analyses have shown to be effective to detect burn, such as the root mean square (RMS), correlation of the AE, constant false alarm rate (CFAR), ratio of power (ROP) and mean-value deviance (MVD). However, the CFAR, ROP, Kurtosis and correlation of the AE have been presented more sensitive than the RMS. Copyright © 2006 by ABCM.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Composites made of Calcium-modified lead titanate (PTCa) and poly (ether-etherketone) (PEEK) high performance polymer matrix were prepared in the film form using a hot press. The ceramic volume fraction reaches up to 60 percent providing a composite with 0-3 and 1-3 mixed connectivities due to the high ceramic content and the resulting materials could be considered PEEK-bonded PTCa particulate composite. The composites were characterized using piezoelectric spectroscopy and ultrasonic immersion techniques. Values up to 38.5 pC/N were obtained for the longitudinal d33 piezoelectric coefficient. The composite was surface-mounted on a carbon fiber plate-like specimen and the ability of the PTCa/PEEK composite to detect acoustic emission (AE) is reported. © 2006 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The continuous technological advances require materials with properties that conventional material cannot display. Material property combinations are being the focus to the development of composite materials, which are considered a multiphase material that exhibits properties of the constituent phases. One interesting material to be studied as sensing material is the composite made of ferroelectric ceramic and polymeric matrix as a two-phases composite material. In that case, the combinations properties intended are the high piezo and pyroelectric activities of the dense ceramic with the impact resistance, flexibility, formability and low densities of the polymer. Using the piezoelectric property of the composite film, it can be used to detect acoustic emission (AE), which is a transient elastic wave generated by sudden deformation in materials under stress. AE can be applied for evaluating the health of structures in a nondestructive way and without any lapse of time. The preliminary result indicates that the composite Pz34/PEEK can be used as sensing material for nondestructive evaluation. ©2009 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new 2-D hydrophone array for ultrasound therapy monitoring is presented, along with a novel algorithm for passive acoustic mapping using a sparse weighted aperture. The array is constructed using existing polyvinylidene fluoride (PVDF) ultrasound sensor technology, and is utilized for its broadband characteristics and its high receive sensitivity. For most 2-D arrays, high-resolution imagery is desired, which requires a large aperture at the cost of a large number of elements. The proposed array's geometry is sparse, with elements only on the boundary of the rectangular aperture. The missing information from the interior is filled in using linear imaging techniques. After receiving acoustic emissions during ultrasound therapy, this algorithm applies an apodization to the sparse aperture to limit side lobes and then reconstructs acoustic activity with high spatiotemporal resolution. Experiments show verification of the theoretical point spread function, and cavitation maps in agar phantoms correspond closely to predicted areas, showing the validity of the array and methodology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The monitoring of water uptake in plants is becoming increasingly important. Optical sensors offer considerable advantages over conventional methods and several sensors have been developed including an optical potometer that monitors water uptake from individual roots, the detection of xylem cavitation using audio acoustic emissions with an interferometric force feedback microphone, and an optical fiber displacement transducer that detects changes in leaf thickness in relation to leaf-water potential.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work aims the development of a dedicated system for detection of burning in surface grinding process, where the process will constantly be monitored through the acoustic emission and electric power of the induction motor drive. Acquired by an analog-digital converter, algorithms process the signals and a control signal is generated to inform the operator or interrupt the process in case of burning occurrence. Moreover, the system makes possible the process monitoring via Internet. Additionally, a comparative study between parameters DPO and FKS is carried through. In the experimental work one type of. steel (ABNT-1020 annealed) and one type of grinding wheel referred to as TARGA, model ART 3TG80.3 NVHB, were employed.