935 resultados para Acid-binding-protein
Resumo:
By differential screening, we cloned the CagCNBP, demonstrated its predominant expression in ovary and testis, and reported its development behavior during folliculogenesis and oogenesis by immunofluorescence localization (Liu and Gui, Gene 365:181-192, 2005), but its developmental behavior during spermatogenesis and its transcript distribution during embryogenesis are not revealed. In the present study, by in situ hybridization, we analyze CagCNBP expression pattern during gibel carp embryogenesis. The CagCNBP transcripts ubiquitously distributed in all embryonic cells in early developmental stage embryos, and peak in midbrain, hindbrain and somites of gibel carp larva during organogenesis. By antibody detection, we reveal CagCNBP protein distribution change during spermatogenesis. The cell-specific distribution of CagCNBP is revealed by immunofluorescence staining, and predominant CagCNBP expression in testis somatic cells and spermatogonia is demonstrated in this paper. For the first time, the CNBP distribution during spermatogenesis in vertebrate has been revealed.
Resumo:
In vertebrates, folliculogeneis establishes an intricate system for somatic cell-oocyte interaction, and ultimately leads to the acquisition of their respective competences. Although the formation process and corresponding interactions are strikingly similar in diverse organisms, knowledge of genes and signaling pathways involved in follicle formation is very incomplete and the underlying molecular mechanisms remain enigmatic. CNBP has been identified for more than ten years, and the highest level of CNBP transcripts has been observed in adult zebrafish ovary, but little is known about its functional significance during folliculogeneis and oogenesis. In this study, we clone CNBP cDNA from gibel carp (Carassius auratus gibelio), and demonstrate its predominant expression in gibel carp ovary and testis not only by RTPCR but also by Western blot. Its full-length cDNA is 1402 bp, and has an ORF of 489 nt for encoding a peptide of 163 aa. And its complete amino acid sequence shared 68.5%-96.8% identity with CNBPs from other vertebrates. Based on the expression characterization, we further analyze its expression pattern and developmental behaviour during folliculogeneis and oogenesis. Following these studies, we reveal an unexpected discovery that the CagCNBP is associated with follicular cells and oocytes, and significant distribution changes have occurred in degenerating and regenerating follicles. More interestingly, the CagCNBP is more highly expressed in some clusters of interconnected cells within ovarian cysts, no matter whether the cell clusters are formed from the original primordial germ cells or from the newly formed cells from follicular cells that invaded into the atretic oocytes. It is the first time to reveal CNBP relevance to folliculogeneis and oogenesis. Moreover, a similar stage-specific and cell-specific expression pattern has also been observed in the gibel carp testis. Therefore, further studies on CNBP expression pattern and developmental behaviour will be of significance for understanding functional roles of CNBP during gametogenests. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We have determined the structure of the fatty acid-binding protein 6 (fabp6) gene and the tissue-specific distribution of its transcripts in embryos, larvae and adult zebrafish (Danio rerio). Like most members of the vertebrate FABP multigene family, the zebrafish fabp6 gene contains four exons separated by three introns. The coding region of the gene and expressed sequence tags code for a polypeptide of 131 amino acids (14 kDa, pI 6.59). The putative zebrafish Fabp6 protein shared greatest sequence identity with human FABP6 (55.3%) compared to other orthologous mammalian FABPs and paralogous zebrafish Fabps. Phylogenetic analysis showed that the zebrafish Fabp6 formed a distinct clade with the mammalian FABP6s. The zebrafish fabp6 gene was assigned to linkage group (chromosome) 21 by radiation hybrid mapping. Conserved gene synteny was evident between the zebrafish fabp6 gene on chromosome 21 and the FABP6/Fabp6 genes on human chromosome 5, rat chromosome 10 and mouse chromosome 11. Zebrafish fabp6 transcripts were first detected in the distal region of the intestine of embryos at 72 h postfertilization. This spatial distribution remained constant to 7-day-old larvae, the last stage assayed during larval development. In adult zebrafish, fabp6 transcripts were detected by RT-PCR in RNA extracted from liver, heart, intestine, ovary and kidney (most likely adrenal tissue), but not in RNA from skin, brain, gill, eye or muscle. In situ hybridization of a fabp6 riboprobe to adult zebrafish sections revealed intense hybridization signals in the adrenal homolog of the kidney and the distal region of the intestine, and to a lesser extent in ovary and liver, a transcript distribution that is similar, but not identical, to that seen for the mammalian FABP6/Fabp6 gene. © 2008 The Authors.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Brain fatty acid-binding protein (B-FABP) interacts with biological membranes and delivers polyunsaturated fatty acids (FAs) via a collisional mechanism. The binding of FAs in the protein and the interaction with membranes involve a motif called "portal region", formed by two small α-helices, A1 and A2, connected by a loop. We used a combination of site-directed mutagenesis and electron spin resonance to probe the changes in the protein and in the membrane model induced by their interaction. Spin labeled B-FABP mutants and lipidic spin probes incorporated into a membrane model confirmed that BFABP interacts with micelles through the portal region and led to structural changes in the protein as well in the micelles. These changes were greater in the presence of LPG when compared to the LPC models. ESR spectra of B-FABP labeled mutants showed the presence of two groups of residues that responded to the presence of micelles in opposite ways. In the presence of lysophospholipids, group I of residues, whose side chains point outwards from the contact region between the helices, had their mobility decreased in an environment of lower polarity when compared to the same residues in solution. The second group, composed by residues with side chains situated at the interface between the α-helices, experienced an increase in mobility in the presence of the model membranes. These modifications in the ESR spectra of B-FABP mutants are compatible with a less ordered structure of the portal region inner residues (group II) that is likely to facilitate the delivery of FAs to target membranes. On the other hand, residues in group I and micelle components have their mobilities decreased probably as a result of the formation of a collisional complex. Our results bring new insights for the understanding of the gating and delivery mechanisms of FABPs.
Resumo:
BACKGROUND The early diagnosis of acute myocardial infarction (AMI) very soon after symptom onset remains a major clinical challenge, even when using high-sensitivity cardiac troponin (hs-cTnT). METHODS AND RESULTS We investigated the incremental value of heart-type fatty acid-binding protein (hFABP) in a pre-specified subgroup analysis of patients presenting with suspected AMI within 1 h of symptom onset to the emergency department (ED) in a multicentre study. HFABP was measured in a blinded fashion. Two independent cardiologists using all available clinical information, including hs-cTnT, adjudicated the final diagnosis. Overall, 1411 patients were enrolled, of whom 105 patients presented within 1 h of symptom onset. Of these, 34 patients (32.4%) had AMI. The diagnostic accuracy as quantified by the area under the receiver-operating characteristics curve (AUC) of hFABP was high (0.84 (95% CI 0.74-0.94)). However, the additional use of hFABP only marginally increased the diagnostic accuracy of hs-cTnT (AUC 0.88 (95% CI 0.81-0.94) for hs-cTnT alone to 0.90 (95% CI 0.83-0.98) for the combination; p=ns). After the exclusion of 18 AMI patients with ST-segment elevation, similar results were obtained. Among the 16 AMI patients without ST-segment elevation, six had normal hs-cTnT at presentation. Of these, hFABP was elevated in two (33.3%) patients. CONCLUSIONS hFABP does not seem to significantly improve the early diagnostic accuracy of hs-cTnT in the important subgroup of patients with suspected AMI presenting to the ED very early after symptom onset.
Resumo:
We have cloned a cDNA and gene from the tobacco hornworm, Manduca sexta, which is related to the vertebrate cellular retinoic acid binding proteins (CRABPs). CRABPs are members of the superfamily of lipid binding proteins (LBPs) and are thought to mediate the effects of retinoic acid (RA) on morphogenesis, differentiation, and homeostasis. This discovery of a Manduca sexta CRABP (msCRABP) demonstrates the presence of a CRABP in invertebrates. Compared with bovine/murine CRABP I, the deduced amino acid sequence of msCRABP is 71% homologous overall and 88% homologous for the ligand binding pocket. The genomic organization of msCRABP is conserved with other CRABP family members and the larger LBP superfamily. Importantly, the promoter region contains a motif that resembles an RA response element characteristic of the promoter region of most CRABPs analyzed. Three-dimensional molecular modeling based on postulated structural homology with bovine/murine CRABP I shows msCRABP has a ligand binding pocket that can accommodate RA. The existence of an invertebrate CRABP has significant evolutionary implications, suggesting CRABPs appeared during the evolution of the LBP superfamily well before vertebrate/invertebrate divergence, instead of much later in evolution in selected vertebrates.
Resumo:
Fatty acid binding proteins (FABPs) exhibit a β-barrel topology, comprising 10 antiparallel β-sheets capped by two short α-helical segments. Previous studies suggested that fatty acid transfer from several FABPs occurs during interaction between the protein and the acceptor membrane, and that the helical domain of the FABPs plays an important role in this process. In this study, we employed a helix-less variant of intestinal FABP (IFABP-HL) and examined the rate and mechanism of transfer of fluorescent anthroyloxy fatty acids (AOFA) from this protein to model membranes in comparison to the wild type (wIFABP). In marked contrast to wIFABP, IFABP-HL does not show significant modification of the AOFA transfer rate as a function of either the concentration or the composition of the acceptor membranes. These results suggest that the transfer of fatty acids from IFABP-HL occurs by an aqueous diffusion-mediated process, i.e., in the absence of the helical domain, effective collisional transfer of fatty acids to membranes does not occur. Binding of wIFABP and IFABP-HL to membranes was directly analyzed by using a cytochrome c competition assay, and it was shown that IFABP-HL was 80% less efficient in preventing cytochrome c from binding to membranes than the native IFABP. Collectively, these results indicate that the α-helical region of IFABP is involved in membrane interactions and thus plays a critical role in the collisional mechanism of fatty acid transfer from IFABP to phospholipid membranes.
Resumo:
Peroxisome proliferator-activated receptor α (PPARα) is a key regulator of lipid homeostasis in hepatocytes and target for fatty acids and hypolipidemic drugs. How these signaling molecules reach the nuclear receptor is not known; however, similarities in ligand specificity suggest the liver fatty acid binding protein (L-FABP) as a possible candidate. In localization studies using laser-scanning microscopy, we show that L-FABP and PPARα colocalize in the nucleus of mouse primary hepatocytes. Furthermore, we demonstrate by pull-down assay and immunocoprecipitation that L-FABP interacts directly with PPARα. In a cell biological approach with the aid of a mammalian two-hybrid system, we provide evidence that L-FABP interacts with PPARα and PPARγ but not with PPARβ and retinoid X receptor-α by protein–protein contacts. In addition, we demonstrate that the observed interaction of both proteins is independent of ligand binding. Final and quantitative proof for L-FABP mediation was obtained in transactivation assays upon incubation of transiently and stably transfected HepG2 cells with saturated, monounsaturated, and polyunsaturated fatty acids as well as with hypolipidemic drugs. With all ligands applied, we observed strict correlation of PPARα and PPARγ transactivation with intracellular concentrations of L-FABP. This correlation constitutes a nucleus-directed signaling by fatty acids and hypolipidemic drugs where L-FABP acts as a cytosolic gateway for these PPARα and PPARγ agonists. Thus, L-FABP and the respective PPARs could serve as targets for nutrients and drugs to affect expression of PPAR-sensitive genes.
Resumo:
Molecular cloning of components of protective antigenic preparations has suggested that related parasite fatty acid-binding proteins could form the basis of the protective immune crossreactivity between the parasitic trematode worms Fasciola hepatica and Schistosoma mansoni. Molecular models of the two parasite proteins showed that both molecules adopt the same basic three-dimensional structure, consisting of a barrel-shaped molecule formed by 10 antiparallel beta-pleated strands joined by short loops, and revealed the likely presence of crossreactive, discontinuous epitopes principally derived from amino acids in the C-terminal portions of the molecules. A recombinant form of the S. mansoni antigen, rSm14, protected outbred Swiss mice by up to 67% against challenge with S. mansoni cercariae in the absence of adjuvant and without provoking any observable autoimmune response. The same antigen also provided complete protection against challenge with F. hepatica metacercariae in the same animal model. The results suggest that it may be possible to produce a single vaccine that would be effective against at least two parasites, F. hepatica and S. mansoni, of veterinary and human importance, respectively.