1000 resultados para Acid volcanism
Resumo:
A set of 12 samples of acid rock types Palmas (ATP) and Chapecó (ATC) was used to determine the chemical composition of plagioclase and pyroxene by electron microprobe, with the purpose to get information about the pressure and temperature of crystallization of these rocks. The results show that the pyroxene of ATP rocks (3,2 ± 1,2 kbar, max = 5,1 kbar and 1028 ± 38°C) were formed under pressure conditions higher than those ATC (1,8 ± 0,9 kbar, max = 3,4 kbar and 995 ± 26oC). However, the pressures obtained from plagioclase showed higher pressures for ATC (3.2 ± 1 kbar, max = 6,4 kbar and 1033 ± 12°C) than ATP (1,9 ± 1 kbar, max = 4,8 kbar and 1043 ± 5°C), suggesting that the crystallization of rocktype ATP began with the formation of pyroxene and plagioclase almost simultaneously at a depth of around 17 km while the ATC, began with the crystallization of plagioclase at a depth of about 21 km (assuming a gradient of 3,3 kbar/km). The geothermometry of plagioclase allow us to calculate the concentration of water from about 1 ± 0,3% H2O for both acid rock types. Additional calculations allow us to get the depth of water exsolution of magmatic liquid at 30m below the surface. Although the data are still preliminary and insufficient to model the extrusion of these rocks, they point out to an effusion mechanism of a partially fluidized magma by volatile, which would spread to large areas with small friction with the surface that would increased with the increase of viscosity caused by the loss of volatile and decreasing of temperature, developing coherent structures as lava flows.
Resumo:
The Mesozoic acid volcanism of the Paraná-Etendeka Province can be considered as one of the biggest events of its kind in the Earth's surface, and its study have attracted special interest in characterizing the end of magmatism that preceded the rupture process and the formation of continental Africa and South America Although significant, the acid volcanism featuring Members Chapecó Palmas and Serra Geral Formation represents only 2.5% of the total generated by the magmatic rocks and perhaps therefore the existing literature on these rocks is well less significant than that on the basalts. However, there are still aspects still unclear about the origin and evolution of these rocks in relation to the associated basalts. Thus, two profiles were selected, called RA and TA, which be a systematic collection of samples from the base where the Botucatu Formation sandstones occur at the top, where they observe Palmas acid rock type. These samples should be analyzed for major, minor and trace elements and treated in specific diagrams to define the vertical variation lithochemistry and their possible relationships with the associated basalts
Resumo:
The study of the main characteristics of ash layers in Leg 57 cores shows that they are suitable for an analysis of the effect on eruptive activity of their distribution. We found (1) sediment recovery good and ash layers numerous; (2) sedimentary environment generally free from terrigenous clastic material; (3) reworking limited; (4) volcanic glass very acidic, ranging from rhyolitic to rhyodacitic composition; and (5) alteration and diagenesis negligible above the lower Miocene. The curves of explosive volcanic activity in Holes 438, 439, and 440 display two stages of high activity: an early one around 16 m.y. and a late one starting 5 m.y. B.P., both stages being separated by an upper Miocene quiescence. Detail in these results is limited by the chemical composition of the glass and accounts only for trends in explosive acid volcanism. Nevertheless, results are roughly in agreement with other data from the Northwest Pacific, although some discrepancies in the correlation of intensity of the episodes occur. The data from Leg 57 support the hypothesis of synchronous pulses in explosive volcanism.
Resumo:
The Urn Sohryngkew section of Meghalaya, NE India, located 800-1000 km from the Deccan volcanic province, is one of the most complete Cretaceous-Tertiary boundary (KTB) transitions worldwide with all defining and supporting criteria present: mass extinction of planktic foraminifera, first appearance of Danian species, delta(13)C shift, Ir anomaly (12 ppb) and KTB red layer. The geochemical signature of the KTB layer indicates not only an extraterrestrial signal (Ni and all Platinum Group Elements (PGEs)) of a second impact that postdates Chicxulub, but also a significant component resulting from condensed sedimentation (P), redox fluctuations (As, Co, Fe, Pb, Zn, and to a lesser extent Ni and Cu) and volcanism. From the late Maastrichtian C29r into the early Danian, a humid climate prevailed (kaolinite: 40-60%, detrital minerals: 50-80%). During the latest Maastrichtian, periodic acid rains (carbonate dissolution; CIA index: 70-80) associated with pulsed Deccan eruptions and strong continental weathering resulted in mesotrophic waters. The resulting super-stressed environmental conditions led to the demise of nearly all planktic foraminiferal species and blooms (>95%) of the disaster opportunist Guembelitria cretacea. These data reveal that detrimental marine conditions prevailed surrounding the Deccan volcanic province during the main phase of eruptions in C29r below the KTB. Ultimately these environmental conditions led to regionally early extinctions followed by global extinctions at the KTB. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A scientific challenge is to assess the role of Deccan volcanism in the Cretaceous-Tertiary boundary (KTB) mass extinction. Here we report on the stratigraphy and biologic effects of Deccan volcanism in eleven deep wells from the Krishna-Godavari (K-G) Basin, Andhra Pradesh, India. In these wells, two phases of Deccan volcanism record the world's largest and longest lava mega-flows interbedded in marine sediments in the K-G Basin about 1500 km from the main Deccan volcanic province. The main phase-2 eruptions (similar to 80% of total Deccan Traps) began in C29r and ended at or near the KTB, an interval that spans planktic foraminiferal zones CF1-CF2 and most of the nannofossil Micula prinsii zone, and is correlative with the rapid global warming and subsequent cooling near the end of the Maastrichtian. The mass extinction began in phase-2 preceding the first of four mega-flows. Planktic foraminifera suffered a 50% drop in species richness. Survivors suffered another 50% drop after the first mega-flow, leaving just 7 to 8 survivor species. No recovery occurred between the next three mega-flows and the mass extinction was complete with the last phase-2 mega-flow at the KTB. The mass extinction was likely the consequence of rapid and massive volcanic CO(2) and SO(2) gas emissions, leading to high continental weathering rates, global warming, cooling, acid rains, ocean acidification and a carbon crisis in the marine environment. Deccan volcanism phase-3 began in the early Danian near the C29R/C29n boundary correlative with the planktic foraminiferal zone P1a/P1b boundary and accounts for similar to 14% of the total volume of Deccan eruptions, including four of Earth's longest and largest mega-flows. No major faunal changes are observed in the intertrappeans of zone P1b, which suggests that environmental conditions remained tolerable, volcanic eruptions were less intense and/or separated by longer time intervals thus preventing runaway effects. Alternatively, early Danian assemblages evolved in adaptation to high-stress conditions in the aftermath of the mass extinction and therefore survived phase-3 volcanism. Full marine biotic recovery did not occur until after Deccan phase-3. These data suggest that the catastrophic effects of phase-2 Deccan volcanism upon the Cretaceous planktic foraminifera were a function of both the rapid and massive volcanic eruptions and the highly specialized faunal assemblages prone to extinction in a changing environment. Data from the K-G Basin indicates that Deccan phase-2 alone could have caused the KTB mass extinction and that impacts may have had secondary effects.
Resumo:
The Um Sohryngkew section of Meghalaya, NE India, located 800–1000 km from the Deccan volcanic province, is one of the most complete Cretaceous–Tertiary boundary (KTB) transitions worldwide with all defining and supporting criteria present: mass extinction of planktic foraminifera, first appearance of Danian species, δ13C shift, Ir anomaly (12 ppb) and KTB red layer. The geochemical signature of the KTB layer indicates not only an extraterrestrial signal (Ni and all Platinum Group Elements (PGEs)) of a second impact that postdates Chicxulub, but also a significant component resulting from condensed sedimentation (P), redox fluctuations (As, Co, Fe, Pb, Zn, and to a lesser extent Ni and Cu) and volcanism. From the late Maastrichtian C29r into the early Danian, a humid climate prevailed (kaolinite: 40–60%, detrital minerals: 50–80%). During the latest Maastrichtian, periodic acid rains (carbonate dissolution; CIA index: 70–80) associated with pulsed Deccan eruptions and strong continental weathering resulted in mesotrophic waters. The resulting super-stressed environmental conditions led to the demise of nearly all planktic foraminiferal species and blooms (> 95%) of the disaster opportunist Guembelitria cretacea. These data reveal that detrimental marine conditions prevailed surrounding the Deccan volcanic province during the main phase of eruptions in C29r below the KTB. Ultimately these environmental conditions led to regionally early extinctions followed by global extinctions at the KTB.
Resumo:
Viscosupplements, used for treating joint and cartilage diseases, restore the rheological properties of synovial fluid, regulate joint homeostasis and act as scaffolds for cell growth and tissue regeneration. Most viscosupplements are hydrogels composed of hyaluronic acid (HA) microparticles suspended in fluid HA. These microparticles are crosslinked with chemicals to assure their stability against enzyme degradation and to prolong the action of the viscosupplement. However, the crosslinking also modifies the mechanical, swelling and rheological properties of the HA microparticle hydrogels, with consequences on the effectiveness of the application. The aim of this study is to correlate the crosslinking degree (CD) with these properties to achieve modulation of HA/DVS microparticles through CD control. Because divinyl sulfone (DVS) is the usual crosslinker of HA in viscosupplements, we examined the effects of CD by preparing HA microparticles at 1:1, 2:1, 3:1, and 5:1 HA/DVS mass ratios. The CD was calculated from inductively coupled plasma spectrometry data. HA microparticles were previously sized to a mean diameter of 87.5 µm. Higher CD increased the viscoelasticity and the extrusion force and reduced the swelling of the HA microparticle hydrogels, which also showed Newtonian pseudoplastic behavior and were classified as covalent weak. The hydrogels were not cytotoxic to fibroblasts according to an MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2014.
Resumo:
Acid drainage influence on the water and sediment quality was investigated in a coal mining area (southern Brazil). Mine drainage showed pH between 3.2 and 4.6 and elevated concentrations of sulfate, As and metals, of which, Fe, Mn and Zn exceeded the limits for the emission of effluents stated in the Brazilian legislation. Arsenic also exceeded the limit, but only slightly. Groundwater monitoring wells from active mines and tailings piles showed pH interval and chemical concentrations similar to those of mine drainage. However, the river and ground water samples of municipal public water supplies revealed a pH range from 7.2 to 7.5 and low chemical concentrations, although Cd concentration slightly exceeded the limit adopted by Brazilian legislation for groundwater. In general, surface waters showed large pH range (6 to 10.8), and changes caused by acid drainage in the chemical composition of these waters were not very significant. Locally, acid drainage seemed to have dissolved carbonate rocks present in the local stratigraphic sequence, attenuating the dispersion of metals and As. Stream sediments presented anomalies of these elements, which were strongly dependent on the proximity of tailings piles and abandoned mines. We found that precipitation processes in sediments and the dilution of dissolved phases were responsible for the attenuation of the concentrations of the metals and As in the acid drainage and river water mixing zone. In general, a larger influence of mining activities on the chemical composition of the surface waters and sediments was observed when enrichment factors in relation to regional background levels were used.