990 resultados para Acid Dye
Resumo:
The generation of active chlorine on Ti/Sn(1-x)Ir (x) O-2 anodes, with different compositions of Ir (x = 0.01, 0.05, 0.10 and 0.30 ), was investigated by controlled current density electrolysis. Using a low concentration of chloride ions (0.05 mol L-1) and a low current density (5 mA cm(-2)) it was possible to produce up to 60 mg L-1 of active chlorine on a Ti/Sn0.99Ir0.01O2 anode. The feasibility of the discoloration of a textile acid azo dye, acid red 29 dye (C.I. 16570), was also investigated with in situ electrogenerated active chlorine on Ti/Sn(1-x)Ir (x) O-2 anodes. The best conditions for 100% discoloration and maximum degradation (70% TOC reduction) were found to be: NaCl pH 4, 25 mA cm(-2) and 6 h of electrolysis. It is suggested that active chlorine generation and/or powerful oxidants such as chlorine radicals and hydroxyl radicals are responsible for promoting faster dye degradation. Rate constants calculated from color decay versus time reveal a zero order reaction at dye concentrations up to 1.0 x 10(-4) mol L-1. Effects of other electrolytes, dye concentration and applied density currents also have been investigated and are discussed.
Resumo:
Chemical reagents used by the textile industry are very diverse in their composition, ranging from inorganic compounds to polymeric compounds. Strong color is the most notable characteristic of textile effluents, and a large number of processes have been employed for color removal. In recent years, attention has been directed toward various natural solid materials that are able to remove pollutants from contaminated water at low cost, such as sugarcane bagasse. Cell immobilization has emerged as an alternative that offers many advantages in the biodegradation process, including the reuse of immobilized cells and high mechanical strength, which enables metabolic processes to occur under adverse conditions of pH, sterility, and agitation. Support treatment also increases the number of charges on the surface, thereby facilitating cell immobilization processes through adsorption and ionic bonds. Polyethyleneimine (PEI) is a polycationic compound known to have a positive effect on enzyme activity and stability. The aim of the present study was to investigate a low-cost alternative for the biodegradation and bioremediation of textile dyes, analyzing Saccharomyces cerevisiae immobilization in activated bagasse for the promotion of Acid Black 48 dye biodegradation in an aqueous solution. A 1 % concentration of a S. cerevisiae suspension was evaluated to determine cell immobilization rates. Once immobilization was established, biodegradation assays with free and immobilized yeast in PEI-treated sugarcane bagasse were evaluated for 240 h using UV-vis spectrophotometry. The analysis revealed significant relative absorbance values, indicating the occurrence of biodegradation in both treatments. Therefore, S. cerevisiae immobilized in sugarcane bagasse is very attractive for use in biodegradation processes for the treatment of textile effluents. © 2012 Springer Science+Business Media Dordrecht.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cost-effective organic sensitizers will play a pivotal role in the future large-scale production and application of dye-sensitized solar cells. Here we report two new organic D-pi-A dyes featuring electron-rich 3,4-ethylenedioxythiophene- and 2,2'-bis(3,4-ethylenedioxythiophene)-conjugated linkers, showing a remarkable red-shifting of photocurrent action spectra compared with their thiophene and bithiophene counterparts. On the basis of the 3-f{5'-[N,N-bis(9,9-dimethylfluorene-2-yl)phenyl]-2,2'-bis(3,4-ethylenedioxythiophene)-5-yl}2-cyanoacrylic acid dye, we have set a new efficiency record of 7.6% for solvent-free dye-sensitized solar cells based on metal-free organic sensitizers. Importantly, the cell exhibits an excellent stability, keeping over 92% of its initial efficiency after 1000 h accelerated tests under full sunlight soaking at 60 degrees C. This achievement will considerably encourage further design and exploration of metal-free organic dyes for higher performance dye-sensitized solar cells.
Resumo:
This work assesses the photocatalytic (TiO2/UV) degradation of a simulated acid dye bath (Yellow 3, Red 51, Blue 74, and auxiliary chemicals). Color and phytotoxicity removal were monitored by spectrophotometry and lettuce (Lactuca sativa) seeds as the test organism, respectively. Mineralization was determined by DOC analyses. Photocatalytic, photolytic, and adsorption experiments were performed, showing that adsorption was negligible. After 240 minutes of irradiation, it was achieved 96% and 78% of color removal with photocatalysis and photolysis, respectively. 37% of mineralization occurred with photocatalysis only. The dye bath was rendered completely non-toxic after 60 minutes of photocatalytic treatment; the same result was only achieved with photolysis after 90 minutes. A kinetic model composed of two first-order in series reactions was used. The first photocatalytic decolorization rate constant was k(1) = 0.062 min(-1) and the second k(2) = 0.0043 min(-1), approximately two times greater than the photolytic ones.
Resumo:
This work investigates the solar heterogeneous photocatalytic degradation of three commercial acid dyes: Blue 9 (C.I. 42090), Red 51 (C.I. 45430), and Yellow 23 (C.I. 19140). TiO(2) P25 from Degussa was used as the photocatalyst. The dyes were completely degraded within 120 min of treatment in the following increasing order of removal rate: Blue 9 < Yellow 23 < Red 51. The photocatalytic color removal process was well described by a two-first-order in-series reaction, followed by another first-order reaction. Photolytic experiments showed that this process is quite inefficient and highly selective towards Red 51 only. The dyes` solution was completely decolorized and organic matter removals up to 99% were achieved with photocatalysis. The lack of selectivity and the possibility of using solar light to excite the photocatalyst are promising results regarding the feasibility of this technology.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Colored wastewater poses a challenge to the conventional wastewater treatment techniques. Solid-liquid phase adsorption has been found to be effective for the removal of dyes from effluent. In this paper, the ability of bentonite as an adsorbent for the removal of a commercial dye, Basic Red 2 (BR2), from an aqueous solution has been investigated under various experimental conditions. The adsorption kinetics was shown to be pseudo-second-order. It was found that bentonite had high adsorption capacity for BR2 due to cation exchange. The adsorption equilibrium data can be fitted well by the Langmuir adsorption isotherm model. The effect of the experimental parameters, such as temperature, salt, and pH was investigated through a number of batch adsorption experiments. It was found that the removal of dye increased with the increase in solution pH. However, the change of temperature (15-45 degrees C) and the addition of sodium chloride were found to have little effect on the adsorption process. The results show that electrostatic interactions are not dominant in the interaction between BR2 and bentonite. It was found that the adsorption was a rapid process with 80-90% of the dye removed within the first 2-3 min. Bentonite as an adsorbent is promising for color removal from wastewater.
Resumo:
This study is based on the multidiciplinary approach of using natural colorants as textile dyes. The author was interested in both the historical and traditional aspects of natural dyeing as well as the modern industrial applications of the pure natural compounds. In the study, the anthraquinone compounds were isolated as aglycones from the ectomycorrhizal fungus Dermocybe sanguinea. The endogenous beta-glucosidase of the fungus was used to catalyse the hydrolysis of the O-glycosyl linkage in emodin- and dermocybin-1-beta-D-glucopyranosides. The method, in which 10.45 kg of fresh fungi was starting material, yielded two fractions: 56.0 g of Fraction 1 (94% of the total amount of pigment,) consisting almost exclusively of the main pigments emodin and dermocybin, and 3.3 g of Fraction 2 (6%) consisting mainly of the anthraquinone carboxylic acids. The anthraquinone compounds in Fractions 1 and 2 were separated by one- and two-dimensional thin-layer-chromatography (TLC) using silica plates. 1D TLC showed that neither an acidic nor a basic solvent system alone separated completely all the anthraquinones isolated from D. sanguinea, in spite of the variation of the rations of the solvent components in the systems. Thus, a new 2D TLC technique was developed, applying n-pentanol-pyridine-methanol (6:4:3, v/v/v) and toluene-ethyl acetate-ethanol-formic acid (10:8:1:2, v/v/v/v) as eluents. Fifteen different anthraquinone derivatives were completely separated from one another. Emodin, physcion, endocrocin, dermolutein, dermorubin, 5-chlorodermorubin, emodin-1-beta-D-glucopyranoside, dermocybin-1-beta-D-glucopyranoside and dermocybin, and five new compounds, not earlier identified in D. sanguinea, 7-chloroemodin, 5,7-dichloroemodin, 5,7-dichloroendocrocin, 4-hydroxyaustrocorticone and austrocorticone, were separated and identified on the basis of their Rf-values, UV/Vis spectra and mass spectra. One substance remained unidentified, because of its very low concentration. The anthraquinones in Fractions 1 and 2 were preparatively separeted by liquid-liquid partition, with isopropylmethyl ketone and aqueous phosphate buffer as the solvent system. Advantage was taken of the principle of stepwise pH-gradient elution. The multiple liquid-liquid partition (MLLP) offered an excellent method for the preparative separation of compounds, which contain acidic groups such as the phenolic OH and COOH groups. Due to their strong aggregation properties, these compounds are, without derivatization, very difficult to separate on a preparative scale by chromatographic methods. By the MLLP method remarkable separations were achieved for the components in each mixture. Emodin and dermocybin were both obtained from Fraction 1 in a purity of at least 99%. Pure emodin and dermocybin were applied as mordant dyes to wool and polyamide and as disperse dyes to polyester and polyamide, using the high temperature (HT) technique. A mixture of dermorubin and 5-chlorodermorubin was applied as an acid dye to wool. In these experiments, synthetic dyes were used as references. Experiments were also performed using water extract of the air-dried fungi as dye liquor for wool and silk. The main colouring compounds in the crude water extract were emodin and dermocybin, which indicated that the O-glycosyl linkages in emodin- and dermocybin-1-beta-D-glucopyranosides were broken by the beta-glucosidase enzyme. Apparently, the hydrolysis occurred during the drying of the fungi and during the soaking of the dried fruit bodies overnight when preparing the dyebath. The colour of each dyed material was investigated in terms of the CIELAB L*, a* and b* values, and the colour fastness to light, washing and rubbing was tested according to the ISO standards. In the mordant dyeing experiments, emodin dyed wool and polyamide yellow and red, depending on the pH of the dyebath. Dermocybin gave purple and violet colours. The colour fastness of the mordant-dyed fabrics varied from good to moderate. The fastness properties of the natural anthraquinone carboxylic acids on wool were good, indicating the strength of the ionic bonds between the COO- groups of the dyes and the NH3+ groups of the fibres. In the disperse dyeing experiments, emodin dyed polyester bright yellow and dermocybin bright reddish-orange, and the fabrics showed excellent colour fastness. In contrast, emodin and dermocybin successfully dyed polyamide brownish-orange and wine-red, respectively, but with only moderate fastness. In industrial dyeing processes, natural anthraquinone aglycone mixtures dyed wool and silk well even at low concentrations of mordants, i.e. with 10% of the weight of the fibre (owf) of KAl(SO4)2 and 1 or 0.5% owf of other mordants. This study showed that purified natural anthraquinone compounds can produce bright hues with good colour-fastness properties in different textile materials. Natural anthraquinones have a significant potential for new dyeing techniques and will provide useful alternatives to synthetic dyes.
Resumo:
Multilayer films were fabricated by layer-by-layer electrostatic deposition techniques between poly(diallyIdimethylammonium chloride) (PDDA) and calf thymus DNA (CT DNA) on glassy carbon and quartz substrates. Electrochemical impedance spectroscopy (EIS), Fourier transform infrared (FTIR) spectroscopy and UV-vis spectroscopy demonstrated the uniform assembly of PDDA/DNA multilayer films, and X-ray photoelectron spectroscopy confirmed the elemental composition of the films. Moreover, the interaction of DNA in PDDA/DNA films with methyl green was investigated by UV-vis spectroscopy and circular dichroism (CD). (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The structure of the 1:1 proton-transfer compound from the reaction of L-tartaric acid with the azo-dye precursor aniline yellow [4-(phenylazo)aniline], 4-(phenyldiazenyl)anilinium hydrogen 2R,3R-tartrate C12H12N3+ . C4H6O6- has been determined at 200 K. The asymmetric unit of the compound contains two independent phenylazoanilinium cations and two hydrogen L-tartrate anions. The structure is unusual in that all four phenyl rings of both cations have identical 50% rotational disorder. The two hydrogen L-tartrate anions form independent but similar chains through head-to-tail carboxylic O--H...O~carboxyl~ hydrogen bonds [graph set C7] which are then extended into a two-dimensional hydrogen-bonded sheet structure through hydroxyl O--H...O hydrogen-bonding links. The anilinium groups of the phenyldiazenyl cations are incorporated into the sheets and also provide internal hydrogen-bonding extensions while their aromatic tails layer in the structure without significant interaction except for weak \p--\p interactions [minimum ring centroid separation, 3.844(3) \%A]. The hydrogen L-tartrate residues of both anions have the common short intramolecular hydroxyl O--H...O~carboxyl~ hydogen bonds. This work has provided a solution to the unusual disorder problem inherent in the structure of this salt as well as giving another example of the utility of the hydrogen tartrate in the generation of sheet substructures in molecular assembly processes.
Resumo:
A bifunctionalized TiO2 film containing a dye-sensitized zone and a catalysis zone is designed for visible-light photocatalytic reduction of CO2 to chemicals continuously. Charge separation can be accomplished with electron transferring to catalysis zone and positive charge transforming to anode. Highly efficient conversion of CO2 to formic acid, formaldehyde, and methanol is achieved through the transferring electrons on conduction bands (CB) of TiO2. Reduction of CO2 and O2 evolution take place in separated solutions on different catalysts. The separated solution carried out in this photo-reactor system can avoid CO2 reduction products being oxidized by anode. The yields of reduction products were enhanced remarkably by external electrical power. This study provides not only a new photocatalytic system but also a potential of renewable energy source via carbon dioxide.
Resumo:
The acid anthraquinone dye Tectilon Blue (TB4R) is a major coloured component from the aqueous effluent of a carpet printing plant in Northern Ireland. The aerobic biodegradation of TB4R has been investigated experimentally in batch systems, using three strains of bacteria, namely, Bacillus gordonae (NCIMB 12553), Bacillus benzeovorans (NCIMB 12555) and Pseudomonas putida (NCIMB 9776). All three strains successfully decolourised the dye, and results were correlated using Michaelis-Menten kinetic theory. A recalculation of the reaction rate constants, to account for biosorption, gave an accurate simulation of the colour removal over a 24-h period. Up to 19% of the decolorisation was found to be caused by biosorption of the dye onto the biomass, with the majority of the decolorisation caused by utilisation of the dye by the bacteria. The reaction rate was found to be intermediate between zero and first order at dye concentrations of 200-1000 mg/l. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The positions of atoms in and around acetate molecules at the rutile TiO2(110) interface with 0.1 M acetic acid have been determined with a precision of ±0.05 Å. Acetate is used as a surrogate for the carboxylate groups typically employed to anchor monocarboxylate dye molecules to TiO2 in dye-sensitised solar cells (DSSC). Structural analysis reveals small domains of ordered (2 x 1) acetate molecules, with substrate atoms closer to their bulk terminated positions compared to the clean UHV surface. Acetate is found in a bidentate bridge position, binding through both oxygen atoms to two five-fold titanium atoms such that the molecular plane is along the [001] azimuth. Density functional theory calculations provide adsorption geometries in excellent agreement with experiment. The availability of these structural data will improve the accuracy of charge transport models for DSSC.