930 resultados para Accurately fitting
Resumo:
In this study, by adopting the ion sphere model, the self-consistent. field method is used with the Poisson-Boltzmann equation and the Dirac equation to calculate the ground-state energies of H-like Ti at a plasma electron density from 10(22) cm(-3) to 10(24) cm(-3) and the electron temperature from 100 eV to 3600 eV. The ground-state energy shifts of H-like Ti show different trends with the electron density and the electron temperature. It is shown that the energy shifts increase with the increase in the electron density and decrease with the increase in the electron temperature. The energy shifts are sensitive to the electron density, but only sensitive to the low electron temperature. In addition, an accurately fitting formula is obtained to fast estimate the ground-state energies of H-like Ti. Such fitted formula can also be used to estimate the critical electron density of pressure ionization for the ground state of H-like Ti.
Resumo:
精确的光学常数对于设计和制备高品质的光学薄膜非常重要,尤其是那些光学性能对折射率变化敏感的薄膜。SiO_2是一种常用的低折射率材料,因与常用基底折射率相近使其准确拟合有一定难度。实验通过离子束溅射制备了SiO_2单层膜。考虑测量时的误差和基底折射率的影响,采用透射率包络和反射率包络得到了SiO_2的折射率,并用所得折射率进行反演来对这两种途径在实际测量拟合过程中的准确性进行比对。分析表明,剩余反射率在实际的测量过程中误差更小,直接用测量镀膜前后基片的剩余反射率值可以更简便更准确地得到SiO_2的折射率,能达到10~(-2)的精度。
Resumo:
The work of this thesis is concerned with fitting Hypo-exponential and Erlang phase type distributions for modeling real life processes with non-exponential service time. There exist situations where exponential distributions cannot explain the distribution of service time properly. This thesis presents the application of two traditional statistical estimation techniques to approximate the service distributions of processes with coefficient of variation less than one. It also presents an algorithm to fit Hypo-exponential distribution for complex situations which can’t be handled properly with traditional estimation techniques. The result shows the effect of variation of sample size and other parameters on the efficiency of the estimation techniques by comparing their respective outputs. Furthermore it checks how accurately the proposed algorithm approximates a given distribution.
Resumo:
Cosmetically tinted soft contact lenses are an attractive option for contact lens wearers. Data that we have gathered from annual contact lens fitting surveys demonstrate that those wearing tinted lenses are more likely to be female (4.6% of all soft lenses fitted vs. 1.6% for males; p < 0.0001) and younger (27 11 years vs. 33 13 years for those wearing non-tinted lenses; p < 0.0001). Tinted lenses tend to be worn more on a part-time basis and are replaced less frequently than non-tinted lenses. The decline in fitting tinted lenses over the past 12 years may be due to (a) the current limited availability of tinted lenses in silicone hydrogel materials and daily disposable replacement frequencies, which together represent a significant majority (78%) of new soft lenses fits today, (b) growing concerns among lens wearers and practitioners relating to the risks of complications associated with the wearing of tinted lenses, and (c) reduced promotion of such lenses by the contact lens industry.
Resumo:
Modelling of interferometric signals related to tear film surface quality is considered. In the context of tear film surface quality estimation in normal healthy eyes, two clinical parameters are of interest: the build-up time, and the average interblink surface quality. The former is closely related to the signal derivative while the latter to the signal itself. Polynomial signal models, chosen for a particular set of noisy interferometric measurements, can be optimally selected, in some sense, with a range of information criteria such as AIC, MDL, Cp, and CME. Those criteria, however, do not always guarantee that the true derivative of the signal is accurately represented and they often overestimate it. Here, a practical method for judicious selection of model order in a polynomial fitting to a signal is proposed so that the derivative of the signal is adequately represented. The paper highlights the importance of context-based signal modelling in model order selection.
Twenty first century trends in silicone hydrogel contact lens fitting : an international perspective
Resumo:
Silicone hydrogel contact lenses were introduced into the market in 1999. To assess prescribing trends of this lens type since then, up to 1000 survey forms were sent to contact lens fitters in Australia, Canada, Japan, the Netherlands, Norway, the UK and the USA each year between 2000 and 2008. Practitioners were asked to record data relating to the first 10 contact lens fits or refits performed after receiving the survey form. Analysis of returned forms revealed a rapid increase in the prescribing of silicone hydrogel lenses over the survey period. In 2008, silicone hydrogel lenses represented 36% of all soft lenses prescribed. The categorization of the majority of lenses prescribed as ‘refits’ is primarily attributed to the mass conversion of lens wearers from hydrogel to silicone hydrogel lenses. Silicone hydrogels may soon represent the majority of soft contact lenses prescribed.
Resumo:
In this paper, an enriched radial point interpolation method (e-RPIM) is developed the for the determination of crack tip fields. In e-RPIM, the conventional RBF interpolation is novelly augmented by the suitable trigonometric basis functions to reflect the properties of stresses for the crack tip fields. The performance of the enriched RBF meshfree shape functions is firstly investigated to fit different surfaces. The surface fitting results have proven that, comparing with the conventional RBF shape function, the enriched RBF shape function has: (1) a similar accuracy to fit a polynomial surface; (2) a much better accuracy to fit a trigonometric surface; and (3) a similar interpolation stability without increase of the condition number of the RBF interpolation matrix. Therefore, it has proven that the enriched RBF shape function will not only possess all advantages of the conventional RBF shape function, but also can accurately reflect the properties of stresses for the crack tip fields. The system of equations for the crack analysis is then derived based on the enriched RBF meshfree shape function and the meshfree weak-form. Several problems of linear fracture mechanics are simulated using this newlydeveloped e-RPIM method. It has demonstrated that the present e-RPIM is very accurate and stable, and it has a good potential to develop a practical simulation tool for fracture mechanics problems.
Resumo:
In this paper, an enriched radial point interpolation method (e-RPIM) is developed the for the determination of crack tip fields. In e-RPIM, the conventional RBF interpolation is novelly augmented by the suitable trigonometric basis functions to reflect the properties of stresses for the crack tip fields. The performance of the enriched RBF meshfree shape functions is firstly investigated to fit different surfaces. The surface fitting results have proven that, comparing with the conventional RBF shape function, the enriched RBF shape function has: (1) a similar accuracy to fit a polynomial surface; (2) a much better accuracy to fit a trigonometric surface; and (3) a similar interpolation stability without increase of the condition number of the RBF interpolation matrix. Therefore, it has proven that the enriched RBF shape function will not only possess all advantages of the conventional RBF shape function, but also can accurately reflect the properties of stresses for the crack tip fields. The system of equations for the crack analysis is then derived based on the enriched RBF meshfree shape function and the meshfree weak-form. Several problems of linear fracture mechanics are simulated using this newlydeveloped e-RPIM method. It has demonstrated that the present e-RPIM is very accurate and stable, and it has a good potential to develop a practical simulation tool for fracture mechanics problems.
Resumo:
Where airports were once the sole responsibility of their governments, liberalisation of economies has seen administrative interests in airport spaces divested increasingly towards market led authority. Extant literature suggests that actions in decision spaces can be described under broad idealised forms of governance. However in looking at a sample of 18 different airports it is apparent that these classic models are insufficient to appreciate the contextual complexity of each case. Issues of institutional arrangements, privatisation, and management focus are reviewed against existing governance modes to produce a model for informing privatisation decisions, based on the contextual needs of the individual airport and region. Expanding governance modes to include emergent airport arrangements both contribute to the existing literature, and provides a framework to assist policy makers and those charged with the operation of airports to design effective governance models. In progressing this framework, contributions are made to government decision makers for the development of new, or review of existing strategies for privatisation, while the private sector can identify the intent and expectations of privatisation initiatives to make better informed decisions.
Resumo:
In this study, the delivery and portal imaging of one square-field and one conformal radiotherapy treatment was simulated using the Monte Carlo codes BEAMnrc and DOSXYZnrc. The treatment fields were delivered to a humanoid phantom from different angles by a 6 MV photon beam linear accelerator, with an amorphous-silicon electronic portal imaging device (a-Si EPID) used to provide images of the phantom generated by each field. The virtual phantom preparation code CTCombine was used to combine a computed-tomography-derived model of the irradiated phantom with a simple, rectilinear model of the a-Si EPID, at each beam angle used in the treatment. Comparison of the resulting experimental and simulated a-Si EPID images showed good agreement, within \[gamma](3%, 3 mm), indicating that this method may be useful in providing accurate Monte Carlo predictions of clinical a-Si EPID images, for use in the verification of complex radiotherapy treatments.
Resumo:
High levels of sitting have been linked with poor health outcomes. Previously a pragmatic MTI accelerometer data cut-point (100 count/min-1) has been used to estimate sitting. Data on the accuracy of this cut-point is unavailable. PURPOSE: To ascertain whether the 100 count/min-1 cut-point accurately isolates sitting from standing activities. METHODS: Participants fitted with an MTI accelerometer were observed performing a range of sitting, standing, light & moderate activities. 1-min epoch MTI data were matched to observed activities, then re-categorized as either sitting or not using the 100 count/min-1 cut-point. Self-report demographics and current physical activity were collected. Generalized estimating equation for repeated measures with a binary logistic model analyses (GEE), corrected for age, gender and BMI, were conducted to ascertain the odds of the MTI data being misclassified. RESULTS: Data were from 26 healthy subjects (8 men; 50% aged <25 years; mean BMI (SD) 22.7(3.8)m/kg2). MTI sitting and standing data mode was 0 count/min-1, with 46% of sitting activities and 21% of standing activities recording 0 count/min-1. The GEE was unable to accurately isolate sitting from standing activities using the 100 count/min-1 cut-point, since all sitting activities were incorrectly predicted as standing (p=0.05). To further explore the sensitivity of MTI data to delineate sitting from standing, the upper 95% confidence interval of the mean for the sitting activities (46 count/min-1) was used to re-categorise the data; this resulted in the GEE correctly classifying 49% of sitting, and 69% of standing activities. Using the 100 count/min-1 cut-point the data were re-categorised into a combined ‘sit/stand’ category and tested against other light activities: 88% of sit/stand and 87% of light activities were accurately predicted. Using Freedson’s moderate cut-point of 1952 count/min-1 the GEE accurately predicted 97% of light vs. 90% of moderate activities. CONCLUSION: The distributions of MTI recorded sitting and standing data overlap considerably, as such the 100 count/min -1 cut-point did not accurately isolate sitting from other static standing activities. The 100 count/min -1 cut-point more accurately predicted sit/stand vs. other movement orientated activities.