927 resultados para Acc rate Al
Resumo:
Marked variations in the chemical and mineralogical composition of sediments at Site 319 have occurred during the 15 My history of sedimentation at this site. The change in composition through time parallels the variability observed in surface sediments from various parts of the Nazca Plate and can be related to variations in the proportion of hydrothermal, hydrogenous, detrital and biogenous phases reaching this site at different times. Metal accumulation rates at Site 319 reach a maximum near the basement for most elements, suggesting a strong hydrothermal contribution during the early history of this site. The hydrothermal contribution decreased rapidly as Site 319 moved away from the spreading center, although a subtle increase in this source is detectable about the time spreading began on the East Pacific Rise. The most recent sedimentation exhibits a strong detritalhydrogenous influence. Post-depositional diagenesis of amorphous phases has converted them to ironrich smectite and well-crystallized goethite without significantly altering the bulk composition of the sediment.
Resumo:
Sedimentation in the central Pacific during the Jurassic and Early Cretaceous was dominated by abundant biogenic silica. A synthesis of the stratigraphy, lithology, petrology, and geochemistry of the radiolarites in Sites 801 and 800 documents the sedimentation processes and trends in the equatorial central Pacific from the Middle Jurassic through the Early Cretaceous. Paleolatitude and paleodepth reconstructions enable comparisons with previous DSDP sites and identification of the general patterns of sedimentation over a wide region of the Pacific. Clayey radiolarites dominated sedimentation on Pacific oceanic crust within tropical paleolatitudes from at least the latest Bathonian through Tithonian. Radiolarian productivity rose to a peak within 5° of the paleoequator, where accumulation rates of biogenic silica exceeded 1000 g/cm**2/m.y. Wavy-bedded radiolarian cherts developed in the upper Tithonian at Site 801 coinciding with the proximity of this site to the paleoequator. Ribbon-bedding of some radiolarian cherts exposed on Pacific margins may have formed from silicification of radiolarite deposited near the equatorial high-productivity zone where radiolarian/clay ratios were high. Silicification processes in sediments extensively mixed by bioturbation or enriched in clay or carbonate generally resulted in discontinuous bands or nodules of porcellanite or chert, e.g., a "knobby" radiolarite. Ribbon-bedded cherts require primary alternations of radiolarian-rich and clay-rich layers as an initial structural template, coupled with abundant biogenic silica in both layers. During diagenesis, migration of silica from clay-rich layers leaves radiolarian "ghosts" or voids, and the precipitation in adjacent radiolarite layers results in silicification of the inter-radiolarian matrix and infilling of radiolarian tests. Alternations of claystone and clay-rich radiolarian grainstone were deposited during the Callovian at Site 801 and during the Berriasian-Valanginian at Site 800, but did not silicify to form bedded chert. Carbonate was not preserved on the Pacific oceanic floor or spreading ridges during the Jurassic, perhaps due to an elevated level of dissolved carbon dioxide. During the Berriasian through Hauterivian, the carbonate compensation depth (CCD) descended to approximately 3500 m, permitting the accumulation of siliceous limestones at near-ridge sites. Carbonate accumulation rates exceeded 1500 g/cm**2/m.y. at sites above the CCD, yet there is no evidence of an equatorial carbonate bulge during the Early Cretaceous. In the Barremian and Aptian, the CCD rose, coincident with the onset of mid-plate volcanic activity. Abundance of Fe and Mn and the associated formation of authigenic Fe-smectite clays was a function of proximity to the spreading ridges, with secondary enrichments occurring during episodes of spreading-center reorganizations. Callovian radiolarite at Site 801 is anomalously depleted in Mn, which resulted either from inhibited precipitation of Mn-oxides by lower pH of interstitial waters induced by high dissolved oceanic CO2 levels or from diagenetic mobilization of Mn. Influx of terrigenous (eolian) clay apparently changed with paleolatitude and geological age. Cyclic variations in productivity of radiolarians and of nannofossils and in the influx of terrigenous clay are attributed to Milankovitch climatic cycles of precession (20,000 yr) and eccentricity (100,000 yr). Diagenetic redistribution of biogenic silica and carbonate enhanced the expression of this cyclic sedimentation. Jurassic and Lower Cretaceous sediments were deposited under oxygenated bottom-water conditions at all depths, accompanied by bioturbation and pervasive oxidation of organic carbon and metals. Despite the more "equable" climate conditions of the Mesozoic, the super-ocean of the Pacific experienced adequate deep-water circulation to prevent stagnation. Efficient nutrient recycling may have been a factor in the abundance of radiolarians in this ocean basin.
Resumo:
Accumulation rates of Mg, Al, Si, Mn, Fe, Ni, Cu, Zn, opal, and calcium carbonate have been calculated from their concentrations in samples from equatorial Deep Sea Drilling Project sites. Maps of element accumulation rates and of Q-mode factors derived from raw data indicate that the flux of trace metals to equatorial Pacific sediments has varied markedly through time and space in response to changes in the relative and absolute influence of several depositional influences: biogenic, detrital, authigenic, and hydrothermal sedimentation. Biologically derived material dominates the sediment of the equatorial Pacific. The distributions of Cu and Zn are most influenced by surface-water biological activity, but Ni, Al, Fe, and Mn are also incorporated into biological material. All of these elements have equatorial accumulation maxima similar to those of opal and calcium carbonate at times during the past 50 m.y. Detritus distributed by trade winds and equatorial surface circulation contributes Al, non-biogenic Si, Fe, and Mg to the region. Detrital sediment is most important in areas with a small supply of biogenic debris and low bulk-accumulation rates. Al accumulation generally increases toward the north and east, indicating its continental source and distribution by the northeast trade winds. Maxima in biological productivity during middle Eocene and latest Miocene to early Pliocene time and concomitant well-developed surface circulation contributed toward temporal maxima in the accumulation rates of Cu, Zn, Ni, and Al in sediments of those ages. Authigenic material is also important only where bulk-sediment accumulation rates are low. Ni, Cu, Zn, and sometimes Mn are associated with this sediment. Fe is almost entirely of hydrothermal origin. Mn is primarily hydrothermal, but some is probably scavenged from sea water by amorphous iron hydroxide floes along with other elements concentrated in hydrothermal sediments, Ni, Cu, and Zn. During the past 50 m.y. all of these elements accumulated over the East Pacific Rise at rates nearly an order of magnitude higher than those at non-rise-crest sites. In addition, factor analysis indicates that some of this material is carried substantial distances to the west of the rise crest. Accumulation rates of Fe in basal metalliferous sediments indicate that the hydrothermal activity that supplied amorphous Fe oxides to the East Pacific Rise areas was most intense during middle Eocene and late Miocene to early Pliocene time.
Resumo:
We examine whether or not a relationship exists between the late Miocene carbon isotope shift (~7.6-6.6 Ma) and marine productivity at four sites from the Indian and Pacific Oceans (Ocean Drilling Program Sites 721, 1146, 1172, and 846). We use a multiproxy approach based on benthic foraminiferal accumulation rates, elemental ratios, and dissolution indices, and we compare these data to benthic foraminiferal d13C values measured on the same samples. Although some of these sites have been targeted previously in studies of either the late Miocene/early Pliocene "biogenic bloom" (Sites 721 and 846) or the late Miocene carbon isotope shift (Site 1172), our records are the first to establish paired proxy records of carbon isotopes and paleoproductivity allowing a direct assessment of a potential link. Our results indicate that at all sites, productivity increased sometime during the d13C shift; at three sites (721, 1146, and 846), productivity increased at the beginning of the shift. The correlation coefficients derived from linear regression between micropaleontologically derived productivity and foraminiferal d13C values are relatively high during the time interval containing the late Miocene d13C shift (and statistically significant at three of the sites). Carbon flux and isotope mass balance considerations illustrate that transfer of organic matter between the terrestrial and marine reservoirs together with enhanced oceanic upwelling best approximates observed changes in carbon isotope records and paleoproductivity. We note that long-term trend in the Site 846 paleoproductivity record can be correlated to the long-term trend in the Site 848 eolian flux reconstructions of Hovan (1995, doi:10.2973/odp.proc.sr.138.132.1995) hinting at a link between strengthened wind regime and productivity during the late Miocene.
Resumo:
We have analyzed 33 Pliocene bulk sediment samples from Ocean Drilling Program Site 1085 in the Cape Basin, located offshore of western Africa in the Angola-Benguela Current system, for 17 major and trace elements, and interpreted their associations and temporal variations in the context of an allied data set of CaCO3, opal, and Corg. We base our interpretations on elemental ratios, accumulation rates, inter-element correlations, and several multi-element statistical techniques. On the basis of qualitative assessment of downhole changes in the distributions of P and Ba, utilized as proxies of export production, we conclude that highs in bulk and biogenic accumulation that occur at 3.2 Ma, 3.0 Ma, 2.4 Ma, and 2.25 Ma were caused by increases in export production as well as terrigenous flux, and record a greater sequestering of organic matter during these time periods. Studies of refractory elements and other indicator proxies (SiO2, Al2O3, TiO2, Fe2O3, MgO, V, Cr, Sr, and Zr) strongly suggest that the terrigenous component of the bulk sediment is composed of two compositional end-members, one being 'basaltic' in composition and the other similar to an 'average shale'. The basaltic end-member comprises approximately 10-15% of the total bulk sediment and its presence is consistent with the local geology of source material in the drainage basin of the nearby Orange River. The increase in bulk accumulation at 2.4 Ma appears to reflect a greater relative increase in basaltic input than the relative increase in shale-type input. Although studies such as this cannot precisely identify the transport mechanisms of the different terrigenous components, these results are most consistent with variations in sea level (and associated changes in shelf geometry and fluvial input) being responsible for the changing depositional conditions along the Angolan Margin during this time period.
Resumo:
The monogragh contains results of mineralogicai and geochemical studies of Mesozoic and Cenozoic deposits from the Pacific Ocean collected during Deep Sea Drilling Project. Special attention is paid on the aspects of geochemical history of post-Jurassic sedimentation in the central part of the Northwest Pacific, detailed characteristics of the main stages of sedimentary evolution are given: Early Cretaceons (protooceanic), Late Cretaceons (transitional) and Cenozoic (oceanic). Results of mineralogical and geochemical studies of hydrothermal deposits from the Galapagos Rift are given as well.
Resumo:
Surveys of the areas surrounding the sites drilled on the Leg 92 19°S transect showed that sedimentation at all except the oldest site is dominated by calcium carbonate deposition. The sediments in the area of the oldest site, west of the Austral Fracture Zone, are being deposited beneath the calcium carbonate compensation depth and are dominated by terrigenous and metal-rich hydrogenous and hydrothermal sediments. The noncarbonate sediments in all of the areas east of the Austral Fracture Zone are dominated by hydrothermal sediment similar in composition to that presently being deposited at the East Pacific Rise. Although no biogenic microfossils were present in smear slides of the sediment, geochemical partitioning suggests that a remnant signal of siliceous biogenic deposition may be preserved, especially in gravity core (GC) 8, which was collected from a high heat flow zone near Site 600. The siliceous sediment may also result from the deposition of amorphous hydrothermal silica from the higher concentrations of pore water SiO2 characteristic of the upwelling waters. Sedimentation on the broad plateaus that characterize each area is quite uniform and suggests that sites on these plateaus will be broadly representative of pelagic sedimentation in the area.
Resumo:
Pelagic sedimentation in the northwest Indian Ocean has been studied using sediments from Hole 711A (the section from 0 to 70.5 mbsf, 0-22 Ma), a deep site (4428 m) drilled during Ocean Drilling Program Leg 115. The clay fraction of the sediments represents poorly developed pelagic deposits with considerably lower contents of Mn, Ba, Cu, Ni, Cr, and Zn than is typical for well-oxidized pelagic sediments formed far from the continents (e.g., in the central Indian or Pacific oceans). Geochemical provenance models, representing conservative mixing models with terrigenous, exhalative-volcanic, and biogenous matter as the only inputs, explain most of the compositional variations in the sediments. The models show that terrigenous matter accounts for about 96%-100% of all SiO2, Al2O3, TiO2, and Zr; about 73%-85% of all Fe2O3, V, and Ni; and about 40%-60% of the Cu and Zn abundances. Exhalative-volcanic matter delivers a large fra tion of Mn (78%-85%), some Fe (15%-219/o), and possibly some Cu (38%-51%). Biogenous deposition is generally of restricted significance; at most 6%-35% of all Cu and Zn may derive from biogenic matter. The exhalative-volcanic matter is slightly more abundant in the oldest deposits, reflecting a plate tectonic drift away from the volcanic Carlsberg Ridge. The Al/Ti ratio reveals that silicic crustal matter plays a somewhat larger role in the upper and lower part of the section studied, whereas the basaltic input is slightly higher in the intermediate levels (age 5-15 m.y.). The sediment abundances of Ba generally exceed those predicted by the models, an anomalous behavior also observed in equatorial Pacific sediments. This is possibly caused by poor knowledge of the input components. Several changes in accumulation rates seem to correlate with climatic changes (onset of monsoon-driven upwellings and sea-level regressions of about 50-100 m at 10, 15-16, and 20-21 Ma). A number of constituents show higher accumulation rates at or shortly after these regressions, suggesting an accelerated removal of fines from shallow oceanic areas. Furthermore, the SiO2/Al2O3 ratio shows a small increase in sediments younger than 10 Ma, implying an increase in biological productivity, particularly after the onset of monsoon-driven upwelling in the northwest Indian Ocean. This trend is paralleled by a general increase in the accumulation rates of Ba and CaCO3. However, these accumulation rates are generally significantly lower than under the biological high-productivity zone in the equatorial Pacific. The onset of these upwelling systems about 10 Ma is probably related to the closing of the gap between India and the main Asiatic continent, preventing free circulation around the Indian subcontinent.
Resumo:
The rate at which hydrothermal precipitates accumulate, as measured by the accumulation rate of manganese, can be used to identify periods of anomalous hydrothermal activity in the past. From a preliminary study of Sites 597 and 598, four periods prior to 6 Ma of anomalously high hydrothermal activity have been identified: 8.5 to 10.5 Ma, 12 to 16 Ma, 17 to 18 Ma, and 23-to-27 Ma. The 18-Ma anomaly is the largest and is associated with the jump in spreading from the fossil Mendoza Ridge to the East Pacific Rise, whereas the 23-to-27-Ma anomaly is correlated with the birth of the Galapagos Spreading Center and resultant ridge reorganization. The 12-to-16-Ma and 8.5-to-10.5-Ma anomalies are correlated with periods of anomalously high volcanism around the rim of the Pacific Basin and may be related to other periods of ridge reorganization along the East Pacific Rise. There is no apparent correlation between periods of fast spreading at 19°S and periods of high hydrothermal activity. We thus suggest that periods when hydrothermal activity and crustal alteration at mid-ocean ridges are the most pronounced may be periods of large-scale ridge reorganization.
Resumo:
Since the 1970s, Ocean Drilling Program (ODP) and Deep Sea Drilling Program (DSDP) studies have documented high accumulations of biogenic silica and carbonate in the late Miocene-early Pliocene Indian-Pacific Ocean. This high biogenic productivity event, or the "Biogenic Bloom Event," has been dated from 9.0 to 3.5 Ma (Leinen, 1979, doi:10.1130/0016-7606(1979)90<801:BSAITC>2.0.CO;2; Theyer et al., 1985, doi:10.2973/dsdp.proc.85.133.1985; Farrell et al., 1995, doi:10.2973/odp.proc.sr.138.143.1995; Dickens and Owen, 1996, doi:10.1016/0377-8398(95)00054-2, 1999, doi:10.1016/S0025-3227(99)00057-2; Dickens and Barron, 1997, doi:10.1016/S0377-8398(97)00003-0; Berger et al., 1993, doi:10.2973/odp.proc.sr.130.051.1993). It is unknown, however, whether the Biogenic Bloom Event existed in the South China Sea (SCS). High-quality Cenozoic sediment cores taken from the SCS during ODP Leg 184 provide an opportunity to investigate this question. The purpose of this study is to trace and illustrate the change in biogenic productivity in the southern SCS since the late Miocene and the Biogenic Bloom Event in terms of the content and accumulation rate of opal and carbonate at Site 1143.
Resumo:
The terrigenous mineral fraction of sediments recovered by drilling during Ocean Drilling Program Leg 167 at Sites 1018 and 1020 is used to evaluate changes in the source and transport of fine-grained terrigenous sediment and its relation to regional climates and the paleoceanographic evolution of the California Current system during the late Pleistocene. Preliminary time scales developed by correlation of oxygen isotope stratigraphies with the global SPECMAP record show average linear sedimentation rates in excess of 100 m/m.y., which provide an opportunity for high-resolution studies of terrigenous flux, grain size, and mineralogy. The mass flux of terrigenous minerals at Site 1018 varies from 5 to 30 g/(cm**2 x k.y.) and displays a general trend toward increased flux during glacials. The terrigenous record at Site 1020 shows a similar pattern of increased glacial input, but overall accumulation rates are significantly lower. Spectral analysis demonstrates that most of this variability is concentrated in frequency bands related to orbital cycles of eccentricity, tilt, and precession. Detailed grain-size analysis performed on the isolated terrigenous mineral fraction shows that sediments from Site 1018 are associated with higher energy transport and depositional regimes than those found at Site 1020. Grain-size data are remarkably uniform throughout the last 500 k.y., with no discernible difference observed between glacial and interglacial size distributions within each site. X-ray diffraction analysis of the <2-µm clay component suggests that the deposition of minerals found at Site 1020 is consistent with transport from a southern source during intervals of increased terrigenous input.
Resumo:
Instrumental monitoring of the climate at high northern latitudes has documented the ongoing warming of the last few decades. Climate modelling has also demonstrated that the global warming signal will be amplified in the polar region. Such temperature increases would have important implications on the ecosystem and biota of the Barents Sea. This study therefore aims to reconstruct the climatic changes of the Barents Sea based on benthic foraminifera over approximately the last 1400 years at the decadal to sub-decadal scale. Oxygen and carbon isotope analysis and benthic foraminiferal species counts indicate an overall warming trend of approximately 2.6°C through the 1400-year record. In addition, the well-documented cooling period equating to the 'Little Ice Age' is evident between c. 1650 and 1850. Most notably, a series of highly fluctuating temperatures are observed over the last century. An increase of 1.5°C is shown across this period. Thus for the first time we are able to demonstrate that the recent Arctic warming is also reflected in the oceanic micro-fauna.
Resumo:
Bulk sediment accumulation rates and carbonate and carbonate-free accumulation rates corrected for tectonic tilting have been calculated for Leg 78A sediments. These rates are uniformly low, ranging from 0.1 to 6.8 g/(cm**2 x 10**3 yr.), reflecting the pelagic-hemipelagic nature of all the sediments drilled in the northern Lesser Antilles forearc. Rates calculated for Sites 541 and 542 [0.6-6.8 g/(cm**2 x 10**3 yr.)], located on the lower slope of the accretionary prism, are significantly greater than the Neogene rates calculated for oceanic reference Site 543 [0.1-2.4 g/(cm**2 x 10**3)]. This difference could be the result of (1) tectonic thickening of accretionary prism sediments due to folding, small-scale faulting, and layer-parallel shortening; (2) deposition in shallower water farther above the CCD (carbonate compensation depth) resulting in preservation of a greater percentage of calcareous microfossils; or (3) a greater percentage of foraminiferal sediment gravity flows. Terrigenous turbidites are not documented in the Leg 78A area because of (1) great distance from South American sources; (2) damming effects of east-west trending tectonic elements; and (3) location on the Tiburon Rise (Site 543). This lack of terrigenous material, characteristic of intraoceanic convergent margins, suggests that published sedimentation models for active continental convergent margins with abundant terrigenous influxes are not applicable to intraoceanic convergent margin settings.
Resumo:
Low concentrations of organic carbon in slowly accumulating sediments from Sites 597, 600, and 601 reflect a history of low marine productivity in the subtropical South Pacific since late Oligocene times. The distributions of n-alkanes, n-alkanoic acids, and n-alkanols provide evidence of the microbial alteration of sediment organic matter. Landderived hydrocarbons, possibly from eolian transport, dominate n-alkane distributions in these samples.
Resumo:
Le numerose osservazioni compiute a partire dagli anni `30 confermano che circa il 26% dell'Universo è costituito da materia oscura. Tale materia ha la particolarità di interagire solo gravitazionalmente e debolmente: essa si presenta massiva e neutra. Tra le numerose ipotesi avanzate riguardanti la natura della materia oscura una delle più accreditate è quella delle WIMP (Weakly Interacting Massive Particle). Il progetto all'avanguardia nella ricerca diretta delle WIMP è XENON presso i Laboratori Nazionali del Gran Sasso (LNGS). Tale esperimento è basato sulla diffusione elastica delle particelle ricercate su nuclei di Xeno: il rivelatore utilizzato è una TPC a doppia fase (liquido-gas). La rivelazione diretta di materia oscura prevede l'impiego di un rivelatore molto grande a causa della piccola probabilità di interazione e di ambienti a bassa radioattività naturale, per ridurre al minimo il rumore di fondo. Nell'ottica di migliorare la sensibilità del rivelatore diminuendo l'energia di soglia sono in fase di ricerca e sviluppo soluzioni alternative a quelle adottate attualmente. Una di tali soluzioni prevede l'utilizzo di fotorivelatori di tipo SiPM da affiancare ai normali PMT in uso. I fotorivelatori al silicio devono lavorare ad una temperatura di (circa 170 K) e devono rivelare fotoni di lunghezza d'onda di circa 175 nm. Il presente lavoro di tesi si colloca nell'ambito di tale progetto di ricerca e sviluppo. Lo scopo di tale lavoro è stato la scrittura di un programma DAQ in ambiente LabVIEW per acquisire dati per caratterizzare in aria fotorivelatori di tipo SiPM. In seguito con tale programma sono state effettuate misure preliminari di pedestallo da cui è stato possibile determinare l'andamento di guadagno e di dark rate al variare della tensione di alimentazione del SiPM. L'analisi dati è stata effettuata impiegando un programma scritto in C++ in grado di analizzare le forme d'onda acquisite dal programma LabVIEW.