96 resultados para Acarology


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mites can be found in all imaginable terrestrial habitats, in freshwater, and in salt water. Mites can be found in our houses and furnishings, on our clothes, and even in the pores of our skin-almost every single person carries mites. Most of the time, we are unaware of them because they are small and easily overlooked, and-most of the time-they do not cause trouble. In fact, they may even proof useful, for instance in forensics. The first arthropod scavengers colonising a dead body will be flies with phoretic mites. The flies will complete their life cycle in and around the corpse, while the mites may feed on the immature stages of the flies. The mites will reproduce much faster than their carriers, offering themselves as valuable timeline markers. There are environments where insects are absent or rare or the environmental conditions impede their access to the corpse. Here, mites that are already present and mites that arrive walking, through air currents or material transfer become important. At the end of the ninetieth century, the work of Jean Pierre M,gnin became the starting point of forensic acarology. M,gnin documented his observations in 'La Faune des Cadavres' [The Fauna of Carcasses]. He was the first to list eight distinct waves of arthropods colonising human carcasses. The first wave included flies and mites, the sixth wave was composed of mites exclusively. The scope of forensic acarology goes further than mites as indicators of time of death. Mites are micro-habitat specific and might provide evidential data on movement or relocation of bodies, or locating a suspect at the scene of a crime. Because of their high diversity, wide occurrence, and abundance, mites may be of great value in the analysis of trace evidence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mites are a highly diversified group of chelicerates (arthropods) adapted to a broad spectrum of habitats and diets, presenting extreme specificity to habitats. They are considered to be important indicators of environmental conditions including those modified by human beings. Therefore, they can inform about the environment where a corpse has been exposed to, about the route of specific merchandises, as well as about other applied aspects of forensic entomology. It is not rare the presence of species adapted to cadaveric environments. Jean Pierre Mégnin, forensic veterinarian considered pioneer in the development of forensic entomology, conscious about the importance of mites as forensic indicators, was the first including mites in the decomposition process. For Mégnin, wave six was formed by mites only. Due to the increasing interest of forensic experts in including these organisms in their analysis of trace evidence, as mites are one of the most ubiquitous organisms, we have developed standards for the sampling, conservation and custody of mite evidence of forensic interest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eriophyid mites (Acari: Eriophyoidea: Eriophyidae: Rhombacus sp. and Acalox ptychocarpi Keifer) are recently-emerged pests of commercial eucalypt plantations in subtropical Australia. They cause severe blistering, necrosis and leaf loss to Corymbia citriodora subsp. variegata (F. Muell.) K.D. Hill & L.A.S. Johnson, one of the region's most important hardwood plantation species. In this study we examine the progression, incidence and severity of these damage symptoms. We also measure within-branch colonisation by mites to identify dispersive stages, and estimate the relative abundance of the two co-occurring species. Rhombacus sp., an undescribed species, was numerically dominant, accounting for over 90% of all adult mites. Adults were the dispersive stage, moving mostly within branches, but 12% of recruitment onto new leaves occurred on previously uninfested branches. Damage incidence and severity were correlated, while older leaves had more damage than younger leaves. "Patch-type" damage was less frequent but was associated with higher mite numbers and damage scores than "spot-type" damage, while leaf discoloration symptoms related mostly to leaf age.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A suite of co-occurring eriophyid mite species are significant pests in subtropical Australia, causing severe discolouration, blistering, necrosis and leaf loss to one of the region's most important hardwood species, Corymbia citriodora subsp. variegata (F. Muell.) K. D. Hill & L. A. S. Johnson (Myrtaceae). In this study, we examined mite population dynamics and leaf damage over a 1-year period in a commercial plantation of C. citriodora subsp. variegata. Our aims were to link the incidence and severity of mite damage, and mite numbers, to leaf physical traits (moisture content and specific leaf weight (SLW)); to identify any seasonal changes in leaf surface occupancy (upper vs. lower lamina); and host tree canopy strata (upper, mid or lower canopy). We compared population trends with site rainfall, temperature and humidity. We also examined physical and anatomical changes in leaf tissue in response to mite infestation to characterize the plants' physiological reaction to feeding, and how this might affect photosynthesis. Our main findings included positive correlations with leaf moisture content and mite numbers and with mite numbers and damage severity. Wet and dry leaf mass and SLW were greater for damaged tissue than undamaged tissue. Mites were distributed equally throughout the canopy and on both leaf surfaces. No relationships with climatic factors were found. Damage symptoms occurred equally and were exactly mirrored on both leaf surfaces. Mite infestation increased the overall epidermal thickness and the number and size of epidermal cells and was also associated with a rapid loss of chloroplasts from mesophyll cells beneath damage sites. The integrity of the stomatal complex was severely compromised in damaged tissues. These histological changes suggest that damage by these mites will negatively impact the photosynthetic efficiency of susceptible plantation species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A suite of co-occurring eriophyid mite species are significant pests in subtropical Australia, causing severe discolouration, blistering, necrosis and leaf loss to one of the region's most important hardwood species, Corymbia citriodora subsp. variegata (F. Muell.) K. D. Hill & L. A. S. Johnson (Myrtaceae). In this study, we examined mite population dynamics and leaf damage over a 1-year period in a commercial plantation of C. citriodora subsp. variegata. Our aims were to link the incidence and severity of mite damage, and mite numbers, to leaf physical traits (moisture content and specific leaf weight (SLW)); to identify any seasonal changes in leaf surface occupancy (upper vs. lower lamina); and host tree canopy strata (upper, mid or lower canopy). We compared population trends with site rainfall, temperature and humidity. We also examined physical and anatomical changes in leaf tissue in response to mite infestation to characterize the plants' physiological reaction to feeding, and how this might affect photosynthesis. Our main findings included positive correlations with leaf moisture content and mite numbers and with mite numbers and damage severity. Wet and dry leaf mass and SLW were greater for damaged tissue than undamaged tissue. Mites were distributed equally throughout the canopy and on both leaf surfaces. No relationships with climatic factors were found. Damage symptoms occurred equally and were exactly mirrored on both leaf surfaces. Mite infestation increased the overall epidermal thickness and the number and size of epidermal cells and was also associated with a rapid loss of chloroplasts from mesophyll cells beneath damage sites. The integrity of the stomatal complex was severely compromised in damaged tissues. These histological changes suggest that damage by these mites will negatively impact the photosynthetic efficiency of susceptible plantation species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mites are involved in the decomposition of animal carcases and human corpses at every stage. From initial decay at the fresh stage until dry decomposition at the skeletal stage, a huge diversity of Acari, including members of the Mesostigmata, Prostigmata, Astigmata, Endeostigmata, Oribatida and Ixodida, are an integral part of the constantly changing food webs on, in and beneath the carrion. During the desiccation stage in wave 6 of M,gnin's system, mites can become the dominant fauna on the decomposing body. Under conditions unfavourable for the colonisation of insects, such as concealment, low temperature or mummification, mites might become the most important or even the only arthropods on a dead body. Some mite species will be represented by a few specimens, whereas others might build up in numbers to several million individuals. Astigmata are most prominent in numbers and Mesostigmata in diversity. More than 100 mite species and over 60 mite families were collected from animal carcases, and around 75 species and over 20 families from human corpses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper analyses acarological evidence from a 130-year-old forensic investigation. It was the first case in forensic acarology, i.e., the first case where mites provided substantial information to estimate the post-mortem interval (PMI). In 1878, the mites found in the mummified body of a newborn baby girl in Paris, France, were studied by acarologist and forensic entomologist Jean Pierre M,gnin. M,gnin estimated around 2.4 million mites in the skull and identified them as Tyroglyphus longior (Gervais), a junior synonym of Tyrophagus longior. He suggested that the arrival of these mites at the corpse would have occurred by phoresy on carrier insects, roughly 5 months before the autopsy. There is no doubt about the identification of the mites, M,gnin was a highly respected acarologist. However, two main factors affecting the biology of Tyrophagus mites were not included in the original analysis. First, M,gnin stated that the mites were phoretic. However, he probably did not have access to information about the natural history of the species, because as a rule Tyrophagus mites are non-phoretic. Considering the omnipresence of Tyrophagus mites in soil, most likely the mites will have arrived almost immediately after death. Second, temperature was not taken into account during the estimations of the mite population growth rate. The new analysis is based on current knowledge of Tyrophagus biology and includes temperature, estimated following a handful of weather reports of the years 1877 and 1878. The new projections indicate that non-phoretic mites may have colonised the body just after death and the colony would have built up over 8 months, contrary to the 5 months proposed by M,gnin. This new lapse of time agrees with the PMI proposed by Brouardel: on 15 January 1878 he postulated the death of the newborn to have occurred some 8 months before the autopsy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phoretic mites are likely the most abundant arthropods found on carcases and corpses. They outnumber their scavenger carriers in both number and diversity. Many phoretic mites travel on scavenger insects and are highly specific; they will arrive on a particular species of host and no other. Because of this, they may be useful as trace indicators of their carriers even when their carriers are absent. Phoretic mites can be valuable markers of time. They are usually found in a specialised transitional transport or dispersal stage, often moulting and transforming to adults shortly after arrival on a carcase or corpse. Many are characterised by faster development and generation cycles than their carriers. Humans are normally unaware, but we too carry mites; they are skin mites that are present in our clothes. More than 212 phoretic mite species associated with carcases have been reported in the literature. Among these, mites belonging to the Mesostigmata form the dominant group, represented by 127 species with 25 phoretic mite species belonging to the family Parasitidae and 48 to the Macrochelidae. Most of these mesostigmatids are associated with particular species of flies or carrion beetles, though some are associated with small mammals arriving during the early stages of decomposition. During dry decay, members of the Astigmata are more frequently found; 52 species are phoretic on scavengers, and the majority of these travel on late-arriving scavengers such as hide beetles, skin beetles and moths. Several species of carrion beetles can visit a corpse simultaneously, and each may carry 1-10 species of phoretic mites. An informative diversity of phoretic mites may be found on a decaying carcass at any given time. The composition of the phoretic mite assemblage on a carcass might provide valuable information about the conditions of and time elapsed since death.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the fact that mites were used at the dawn of forensic entomology to elucidate the postmortem interval, their use in current cases remains quite low for procedural reasons such as inadequate taxonomic knowledge. A special interest is focused on the phoretic stages of some mite species, because the phoront-host specificity allows us to deduce in many occasions the presence of the carrier (usually Diptera or Coleoptera) although it has not been seen in the sampling performed in situ or in the autopsy room. In this article, we describe two cases where Poecilochirus austroasiaticus Vitzthum (Acari: Parasitidae) was sampled in the autopsy room. In the first case, we could sample the host, Thanatophilus ruficornis (Küster) (Coleoptera: Silphidae), which was still carrying phoretic stages of the mite on the body. That attachment allowed, by observing starvation/feeding periods as a function of the digestive tract filling, the establishment of chronological cycles of phoretic behavior, showing maximum peaks of phoronts during arrival and departure from the corpse and the lowest values in the phase of host feeding. From the sarcosaprophagous fauna, we were able to determine in this case a minimum postmortem interval of 10 days. In the second case, we found no Silphidae at the place where the corpse was found or at the autopsy, but a postmortem interval of 13 days could be established by the high specificity of this interspecific relationship and the departure from the corpse of this family of Coleoptera.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proctolaelaps euserratus Karg, 1994 (Acari, Mesostigmata, Melicharidae), exclusivelly known from the Galápagos Islands till now, is newly reported from decaying matter of animal and human decomposition in various countries of Europe (Slovakia, Spain, United Kingdom). In consequence of high levels of necrophilia, the species is considered to be ecologically unusual among the other melicharids, which are primary associated with other than necrophilic habitats, such as galleries of subcorticolous beetles, bumble bee nests, flowers, etc. Proctolaelaps euserratus is reviewed, morphologically re-described (with first diagnostic characters for males), and considered as a new potential marker for later stages of decomposition, namely butyric fermentation and dry decomposition as classified in modern concepts of forensic acarology.