964 resultados para Abel and Tauber Theorems
Resumo:
Mathematics Subject Classification: 30B10, 30B30; 33C10, 33C20
Resumo:
MSC 2010: 30A10, 30B10, 30B30, 30B50, 30D15, 33E12
Resumo:
We prove a Wiener Tauberian theorem for the L-1 spherical functions on a semisimple Lie group of arbitrary real rank. We also establish a Schwartz-type theorem for complex groups. As a corollary we obtain a Wiener Tauberian type result for compactly supported distributions.
Resumo:
This paper represents the second part of a study of semi-geostrophic (SG) geophysical fluid dynamics. SG dynamics shares certain attractive properties with the better known and more widely used quasi-geostrophic (QG) model, but is also a good prototype for balanced models that are more accurate than QG dynamics. The development of such balanced models is an area of great current interest. The goal of the present work is to extend a central body of QG theory, concerning the evolution of disturbances to prescribed basic states, to SG dynamics. Part 1 was based on the pseudomomentum; Part 2 is based on the pseudoenergy. A pseudoenergy invariant is a conserved quantity, of second order in disturbance amplitude relative to a prescribed steady basic state, which is related to the time symmetry of the system. We derive such an invariant for the semi-geostrophic equations, and use it to obtain: (i) a linear stability theorem analogous to Arnol'd's ‘first theorem’; and (ii) a small-amplitude local conservation law for the invariant, obeying the group-velocity property in the WKB limit. The results are analogous to their quasi-geostrophic forms, and reduce to those forms in the limit of small Rossby number. The results are derived for both the f-plane Boussinesq form of semi-geostrophic dynamics, and its extension to β-plane compressible flow by Magnusdottir & Schubert. Novel features particular to semi-geostrophic dynamics include apparently unnoticed lateral boundary stability criteria. Unlike the boundary stability criteria found in the first part of this study, however, these boundary criteria do not necessarily preclude the construction of provably stable basic states. The interior semi-geostrophic dynamics has an underlying Hamiltonian structure, which guarantees that symmetries in the system correspond naturally to the system's invariants. This is an important motivation for the theoretical approach used in this study. The connection between symmetries and conservation laws is made explicit using Noether's theorem applied to the Eulerian form of the Hamiltonian description of the interior dynamics.
Resumo:
There exists a well-developed body of theory based on quasi-geostrophic (QG) dynamics that is central to our present understanding of large-scale atmospheric and oceanic dynamics. An important question is the extent to which this body of theory may generalize to more accurate dynamical models. As a first step in this process, we here generalize a set of theoretical results, concerning the evolution of disturbances to prescribed basic states, to semi-geostrophic (SG) dynamics. SG dynamics, like QG dynamics, is a Hamiltonian balanced model whose evolution is described by the material conservation of potential vorticity, together with an invertibility principle relating the potential vorticity to the advecting fields. SG dynamics has features that make it a good prototype for balanced models that are more accurate than QG dynamics. In the first part of this two-part study, we derive a pseudomomentum invariant for the SG equations, and use it to obtain: (i) linear and nonlinear generalized Charney–Stern theorems for disturbances to parallel flows; (ii) a finite-amplitude local conservation law for the invariant, obeying the group-velocity property in the WKB limit; and (iii) a wave-mean-flow interaction theorem consisting of generalized Eliassen–Palm flux diagnostics, an elliptic equation for the stream-function tendency, and a non-acceleration theorem. All these results are analogous to their QG forms. The pseudomomentum invariant – a conserved second-order disturbance quantity that is associated with zonal symmetry – is constructed using a variational principle in a similar manner to the QG calculations. Such an approach is possible when the equations of motion under the geostrophic momentum approximation are transformed to isentropic and geostrophic coordinates, in which the ageostrophic advection terms are no longer explicit. Symmetry-related wave-activity invariants such as the pseudomomentum then arise naturally from the Hamiltonian structure of the SG equations. We avoid use of the so-called ‘massless layer’ approach to the modelling of isentropic gradients at the lower boundary, preferring instead to incorporate explicitly those boundary contributions into the wave-activity and stability results. This makes the analogy with QG dynamics most transparent. This paper treats the f-plane Boussinesq form of SG dynamics, and its recent extension to β-plane, compressible flow by Magnusdottir & Schubert. In the limit of small Rossby number, the results reduce to their respective QG forms. Novel features particular to SG dynamics include apparently unnoticed lateral boundary stability criteria in (i), and the necessity of including additional zonal-mean eddy correlation terms besides the zonal-mean potential vorticity fluxes in the wave-mean-flow balance in (iii). In the companion paper, wave-activity conservation laws and stability theorems based on the SG form of the pseudoenergy are presented.
Resumo:
A ten-dimensional super-Poincaré covariant formalism for the superstring was recently developed which involves a BRST operator constructed from superspace matter variables and a pure spinor ghost variable. A super-Poincaré covariant prescription was defined for computing tree amplitudes and was shown to coincide with the standard RNS prescription. In this paper, picture-changing operators are used to define functional integration over the pure spinor ghosts and and to construct a suitable b ghost. A super-Poincaré covariant prescription is then given for the computation of N-point multiloop amplitudes. One can easily prove that massless N-point multiloop amplitudes vanish for N < 4, confirming the perturbative finiteness of superstring theory. One can also prove the Type IIB S-duality conjecture that R4 terms in the effective action receive no perturbative contributions above one loop. © SISSA/ISAS 2004.
Resumo:
MSC 2010: 30C45, 30C55
Resumo:
2000 Mathematics Subject Classification: 41A25, 41A27, 41A36.
Resumo:
The most prominent objective of the thesis is the development of the generalized descriptive set theory, as we call it. There, we study the space of all functions from a fixed uncountable cardinal to itself, or to a finite set of size two. These correspond to generalized notions of the universal Baire space (functions from natural numbers to themselves with the product topology) and the Cantor space (functions from natural numbers to the {0,1}-set) respectively. We generalize the notion of Borel sets in three different ways and study the corresponding Borel structures with the aims of generalizing classical theorems of descriptive set theory or providing counter examples. In particular we are interested in equivalence relations on these spaces and their Borel reducibility to each other. The last chapter shows, using game-theoretic techniques, that the order of Borel equivalence relations under Borel reduciblity has very high complexity. The techniques in the above described set theoretical side of the thesis include forcing, general topological notions such as meager sets and combinatorial games of infinite length. By coding uncountable models to functions, we are able to apply the understanding of the generalized descriptive set theory to the model theory of uncountable models. The links between the theorems of model theory (including Shelah's classification theory) and the theorems in pure set theory are provided using game theoretic techniques from Ehrenfeucht-Fraïssé games in model theory to cub-games in set theory. The bottom line of the research declairs that the descriptive (set theoretic) complexity of an isomorphism relation of a first-order definable model class goes in synch with the stability theoretical complexity of the corresponding first-order theory. The first chapter of the thesis has slightly different focus and is purely concerned with a certain modification of the well known Ehrenfeucht-Fraïssé games. There we (me and my supervisor Tapani Hyttinen) answer some natural questions about that game mainly concerning determinacy and its relation to the standard EF-game
Resumo:
The nonlinear behavior varying with the instantaneous response was analyzed through the joint time-frequency analysis method for a class of S. D. O. F nonlinear system. A masking operator an definite regions is defined and two theorems are presented. Based on these, the nonlinear system is modeled with a special time-varying linear one, called the generalized skeleton linear system (GSLS). The frequency skeleton curve and the damping skeleton curve are defined to describe the main feature of the non-linearity as well. Moreover, an identification method is proposed through the skeleton curves and the time-frequency filtering technique.
Resumo:
This investigation is concerned with various fundamental aspects of the linearized dynamical theory for mechanically homogeneous and isotropic elastic solids. First, the uniqueness and reciprocal theorems of dynamic elasticity are extended to unbounded domains with the aid of a generalized energy identity and a lemma on the prolonged quiescence of the far field, which are established for this purpose. Next, the basic singular solutions of elastodynamics are studied and used to generate systematically Love's integral identity for the displacement field, as well as an associated identity for the field of stress. These results, in conjunction with suitably defined Green's functions, are applied to the construction of integral representations for the solution of the first and second boundary-initial value problem. Finally, a uniqueness theorem for dynamic concentrated-load problems is obtained.
Resumo:
This paper presents several new families of cumulant-based linear equations with respect to the inverse filter coefficients for deconvolution (equalisation) and identification of nonminimum phase systems. Based on noncausal autoregressive (AR) modeling of the output signals and three theorems, these equations are derived for the cases of 2nd-, 3rd and 4th-order cumulants, respectively, and can be expressed as identical or similar forms. The algorithms constructed from these equations are simpler in form, but can offer more accurate results than the existing methods. Since the inverse filter coefficients are simply the solution of a set of linear equations, their uniqueness can normally be guaranteed. Simulations are presented for the cases of skewed series, unskewed continuous series and unskewed discrete series. The results of these simulations confirm the feasibility and efficiency of the algorithms.
Resumo:
We report numerical results from a study of balance dynamics using a simple model of atmospheric motion that is designed to help address the question of why balance dynamics is so stable. The non-autonomous Hamiltonian model has a chaotic slow degree of freedom (representing vortical modes) coupled to one or two linear fast oscillators (representing inertia-gravity waves). The system is said to be balanced when the fast and slow degrees of freedom are separated. We find adiabatic invariants that drift slowly in time. This drift is consistent with a random-walk behaviour at a speed which qualitatively scales, even for modest time scale separations, as the upper bound given by Neishtadt’s and Nekhoroshev’s theorems. Moreover, a similar type of scaling is observed for solutions obtained using a singular perturbation (‘slaving’) technique in resonant cases where Nekhoroshev’s theorem does not apply. We present evidence that the smaller Lyapunov exponents of the system scale exponentially as well. The results suggest that the observed stability of nearly-slow motion is a consequence of the approximate adiabatic invariance of the fast motion.