959 resultados para Abc Transporter


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elicitation of drug resistance and various survival strategies inside host macrophages have been the hallmarks of Mycobacterium tuberculosis as a successful pathogen. ATP Binding Cassette (ABC) transporter type proteins are known to be involved in the efflux of drugs in bacterial and mammalian systems. FtsE, an ABC transporter type protein, in association with the integral membrane protein FtsX, is involved in the assembly of potassium ion transport proteins and probably of cell division proteins as well, both of which being relevant to tubercle bacillus. In this study, we cloned ftsE gene of M. tuberculosis, overexpressed and purified. The recombinant MtFtsE-6xHis protein and the native MtFtsE protein were found localized on the membrane of E. coli and M. tuberculosis cells, respectively. MtFtsE-6xHis protein showed ATP binding in vitro, for which the K42 residue in the Walker A motif was found essential. While MtFtsE-6xHis protein could partially complement growth defect of E. coli ftsE temperature-sensitive strain MFT1181, co-expression of MtFtsE and MtFtsX efficiently complemented the growth defect, indicating that the MtFtsE and MtFtsX proteins might be performing an associated function. MtFtsE and MtFtsX-6xHis proteins were found to exist as a complex on the membrane of E. coli cells co-expressing the two proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To identify genes specifically or predominantly expressed in the stigmas/styles and to establish their possible function in the reproductive process of plants, a tobacco stigma/style cDNA library was constructed and differentially screened, resulting in the isolation of several cDNA clones. The molecular characterization of one of these clones is described here. After sequencing the cDNA and the isolated genomic clone, it was determined that the corresponding gene encodes a protein containing an ATP-binding cassette, characteristic of ABC transporters. This gene, designated as NtWBC1 (Nicotiana tabacum ABC transporter of the White-Brown Complex subfamily), encodes a protein that contains the typical structure of the 'half-transporters' of the White subfamily. To establish the spatial expression pattern of the NtWBC1 gene, northern blot and real-time RT-PCR analyses with total RNA from roots, stems, leaves, sepals, petals, stamens, stigmas/styles, ovaries, and seeds were performed. The result revealed a transcript of 2.5 kb present at high levels in stigmas and styles and a smaller transcript (2.3 kb) present at a lower level in stamens. NtWBC1 expression is developmentally regulated in stigmas/styles, with mRNA accumulation increasing toward anthesis. In situ hybridization experiments demonstrated that NtWBC1 is expressed in the stigmatic secretory zone and in anthers, at the stomium region and at the vascular bundle. NtWBC1 is the first ABC transporter gene with specific expression in plant reproductive organs to be identified and its expression pattern suggests important role(s) in the reproductive process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Pterogyne nitens (Fabaceae) tree, native to South America, has been found to produce guanidine alkaloids as well as bioactive flavonols such as kaempferol, quercetin, and rutin. In the present study, we examined the possibility of interaction between human ATP-binding cassette (ABC) transporter ABCB1 and four guanidine alkaloids isolated from P. nitens (i.e., galegine, nitensidine A, pterogynidine, and pterogynine) using human T cell lymphoblast-like leukemia cell line CCRF-CEM and its multi-drug resistant (MDR) counterpart CEM/ADR5000. In XTT assays, CEM/ADR5000 cells were resistant to the four guanidine alkaloids compared to CCRF-CEM cells, although the four guanidine alkaloids exhibited some level of cytotoxicity against both CCRF-CEM and CEM/ADR5000 cells. In ATPase assays, three of the four guanidine alkaloids were found to stimulate the ATPase activity of ABCB1. Notably, nitensidine A was clearly found to stimulate the ATPase activity of ABCB1 as strongly as the control drug, verapamil. Furthermore, the cytotoxic effect of nitensidine A on CEM/ADR5000 cells was synergistically enhanced by verapamil. Nitensidine A inhibited the extrusion of calcein by ABCB1. In the present study, the possibility of interaction between ABCB1 and two synthetic nitensidine A analogs (nitensidine AT and AU) were examined to gain insight into the mechanism by which nitensidine A stimulates the ATPase activity of ABCB1. The ABCB1-dependent ATPase activity stimulated by nitensidine A was greatly reduced by substituting sulfur (S) or oxygen (O) for the imino nitrogen atom (N) in nitensidine A. Molecular docking studies on human ABCB1 showed that, guanidine alkaloids from P. nitens dock to the same binding pocket as verapamil. Nitensidine A and its analogs exhibit similar binding energies to verapamil. Taken together, this research clearly indicates that nitensidine A is a novel substrate for ABCB1. The present results also suggest that the number, binding site, and polymerization degree of the isoprenyl moiety in the guanidine alkaloids and the imino nitrogen atom cooperatively contribute to their stimulation of ABCB1's ATPase activity. © 2013 Elsevier GmbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucocorticoids (GC) represent the most commonly used drugs for the treatment of acute and chronic inflammatory skin diseases. However, the topical long-term therapy of GC is limited by the occurrence of skin atrophy. Most interestingly, although GC inhibit proliferation of human fibroblasts, they exert a pronounced anti-apoptopic action. In the present study, we further elucidated the molecular mechanism of the GC dexamethasone (Dex) to protect human fibroblasts from programmed cell death. Dex not only significantly alters the expression of the cytosolic isoenzyme sphingosine kinase 1 but also initiated an enhanced intracellular formation of the sphingolipid sphingosine 1-phosphate (S1P). Investigations using S1P (3) ((-/-)) -fibroblasts revealed that this S1P-receptor subtype is essential for the Dex-induced cytoprotection. Moreover, we demonstrate that the ATP-binding cassette (ABC)-transporter ABCC1 is upregulated by Dex and may represent a crucial carrier to transport S1P from the cytosol to the S1P(3)-receptor subtype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochrome c maturation in Escherichia coli requires the ccm operon, which encodes eight membrane proteins (CcmABCDEFGH). CcmE is a periplasmic heme chaperone that binds heme covalently and transfers it onto apocytochrome c in the presence of CcmF, CcmG, and CcmH. In this work we addressed the functions of the ccmABCD gene products with respect to holo-CcmE formation and the subsequent ligation of heme to apocytochrome c. In the absence of the ccmABCD genes, heme is not bound to CcmE. We report that CcmC is functionally uncoupled from the ABC transporter subunits CcmA and CcmB, because it is the only Ccm protein that is strictly required for heme transfer and attachment to CcmE. Site-directed mutagenesis of conserved histidines inactivates the CcmC protein, which is in agreement with the hypothesis that this protein interacts directly with heme. We also present evidence that questions the role of CcmAB as a heme exporter; yet, the transported substrate remains unknown. CcmD was found to be involved in stabilizing the heme chaperone CcmE in the membrane. We propose a heme-trafficking pathway as part of a substantially revised model for cytochrome c maturation in E. coli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transporter associated with antigen processing (TAP) is essential for intracellular transport of protein fragments into the endoplasmic reticulum for loading of major histocompatibility complex (MHC) class I molecules. On the cell surface, these peptide–MHC complexes are monitored by cytotoxic T lymphocytes. To study the ATP hydrolysis of TAP, we developed an enrichment and reconstitution procedure, by which we fully restored TAP function in proteoliposomes. A TAP-specific ATPase activity was identified that could be stimulated by peptides and blocked by the herpes simplex virus protein ICP47. Strikingly, the peptide-binding motif of TAP directly correlates with the stimulation of the ATPase activity, demonstrating that the initial peptide-binding step is responsible for TAP selectivity. ATP hydrolysis follows Michaelis–Menten kinetics with a maximal velocity Vmax of 2 μmol/min per mg TAP, corresponding to a turnover number of approximately 5 ATP per second. This turnover rate is sufficient to account for the role of TAP in peptide loading of MHC molecules and the overall process of antigen presentation. Interestingly, sterically restricted peptides that bind but are not transported by TAP do not stimulate ATPase activity. These results point to coordinated dialogue between the peptide-binding site, the nucleotide-binding domain, and the translocation site via conformational changes within the TAP complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous experiments suggested that trafficking of the a-factor transporter Ste6 of Saccharomyces cerevisiae to the yeast vacuole is regulated by ubiquitination. To define the ubiquitination-dependent step in the trafficking pathway, we examined the intracellular localization of Ste6 in the ubiquitination-deficient doa4 mutant by immunofluorescence experiments, with a Ste6-green fluorescent protein fusion protein and by sucrose density gradient fractionation. We found that Ste6 accumulated at the vacuolar membrane in the doa4 mutant and not at the cell surface. Experiments with a doa4 pep4 double mutant showed that Ste6 uptake into the lumen of the vacuole is inhibited in the doa4 mutant. The uptake defect could be suppressed by expression of additional ubiquitin, indicating that it is primarily the result of a lowered ubiquitin level (and thus of reduced ubiquitination) and not the result of a deubiquitination defect. Based on our findings, we propose that ubiquitination of Ste6 or of a trafficking factor is required for Ste6 sorting into the multivesicular bodies pathway. In addition, we obtained evidence suggesting that Ste6 recycles between an internal compartment and the plasma membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epipolythiodioxopiperazine toxins are secreted by a range of fungi, including Leptosphaeria maculans, which produces sirodesmin, and Aspergillus fumigatus, which produces gliotoxin. The L. maculans biosynthetic gene cluster for sirodesmin includes an ABC transporter gene, sirA. Disruption of this gene led to increased secretion of sirodesmin into the medium and an altered ratio of sirodesmin to its immediate precursor. The transcription pattern of a peptide synthetase that catalyses an early step in sirodesmin biosynthesis was elevated in the sirA mutant by 47% over a 7-day period. This was consistent with the finding that the transporter mutant had elevated sirodesmin levels. Despite increased production of sirodesmin, the sit-A mutant was more sensitive to both sirodesmin and gliotoxin. The putative gliotoxin transporter gene, gliA, (a major facilitator superfamily transporter) from A.fumigatus complemented the tolerance of the L. maculans sirA mutant to gliotoxin, but not to sirodesmin. The results indicate that SirA contributes to self-protection against sirodesmin in L. maculans and suggest a transporter other than SirA is primarily responsible for efflux of endogenously produced sirodesmin. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The various steps of monoterpene indole alkaloid (MIA) biosynthesis are known to occur in specialized cell types and subcellular compartments. Numerous MIAs display powerful biological activities that have led to their use as pharmaceutical treatments for cancer, hypertension and malaria. Many of these compounds accumulate on the leaf surface of medicinally important Apocynaceae plants, which led to the recent discovery and characterization of an ABC transporter (CrTPT2) that was shown to mobilize catharanthine from its site of biosynthesis in epidermal cells to the leaf surface of Catharanthus roseus. Bioinformatic analysis of transcriptomes from several geographically distant MIA-producing species led to the identification of proteins with high amino acid sequence identity to CrTPT2. Molecular cloning of a similar transporter (VmTPT2) from Vinca minor was carried out and expressed in a yeast heterologous system for transport experiments and functional characterization. In planta studies involved transcript expression analysis of the early MIA biosynthetic gene VmTDC and putative transporter VmTPT2, and alkaloid profile analyses. RT-qPCR results showed that VmTPT2 expression increased 15-fold between the first two leaf pairs, and high levels were maintained across older leaves. The alkaloid accumulation profile on leaf surfaces matched that of VmTPT2 expression, especially for the MIAs vincadifformine and vincamine. Gene expression and alkaloid profile analyses suggest that the functional protein may act as a similar transporter to CrTPT2. However, although VmTPT2 had 88.4% identity at the amino acid level to CrTPT2, it displayed an altered expression pattern in planta across developing leaves, and functional characterization using a previously developed yeast heterologous system was unsuccessful due to difficulties with reproducibility of transport assays.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

L’insorgenza di fenomeni coinvolti nello sviluppo della farmacoresistenza costituisce al momento la principale causa di mancata risposta al trattamento chemioterapico nell’osteosarcoma. Questo è in parte dovuto ad una sovraespressione di diversi trasportatori ABC nelle cellule tumorali che causano un aumento dell’efflusso extracellulare del chemioterapico e pertanto una ridotta risposta al trattamento farmacologico. L'oncogene C-MYC è coinvolto nella resistenza al metothrexate, alla doxorubicina e al cisplatino ed è un fattore prognostico avverso, se sovraespresso al momento della diagnosi, in pazienti affetti da osteosarcoma. C-MYC è in grado di regolare l'espressione di diversi trasportatori ABC, probabilmente coinvolti nella resistenza ai farmaci nell’osteosarcoma, e questo potrebbe spiegare l’impatto prognostico avverso dell’oncogene in questo tumore. L’espressione genica di C-MYC e di 16 trasportatori ABC, regolati da C-MYC e / o responsabili dell'efflusso di diversi chemioterapici, è stata valutata su due diverse casistiche cliniche e su un pannello di linee cellulari di osteosarcoma umano mediante real-time PCR. L'espressione della proteina è stata valutata per i 9 trasportatori ABC risultati più rilevanti.Infine l'efficacia in vitro di un inibitore, specifico per ABCB1 e ABCC1, è stata valutata su linee cellulari di osteosarcoma. ABCB1 e ABCC1 sono i trasportatori più espressi nelle linee cellulari di osteosarcoma. ABCB1 è sovraespresso al momento della diagnosi in circa il 40-45% dei pazienti affetti da osteosarcoma e si conferma essere un fattore prognostico avverso se sovraespresso al momento della diagnosi. Pertanto ABCB1 diventa il bersaglio di elezione per lo sviluppo di strategie terapeutiche alternative, nel trattamento dell’osteosarcoma, atte al superamento della farmacoresistenza. L’inibizione dell'attività di tale trasportatore causa un aumento della sensibilità al trattamento chemioterapico nelle linee cellulari di osteosarcoma farmacoresistenti, indicando questo approccio come una possibile strategia per superare il problema della mancata risposta al trattamento farmacologico nei pazienti con osteosarcoma che sovraesprimono ABCB1.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

ATP-binding cassette (ABC) transporters play a pivotal role in human physiology, and mutations in these genes often result in severe hereditary diseases. ABC transporters are expressed in the bovine mammary gland but their physiological role in this organ remains elusive. Based on findings in the context of human disorders we speculated that candidate ABC transporters are implicated in lipid and cholesterol transport in the mammary gland. Therefore we investigated the expression pattern of selected genes that are associated with sterol transport in lactating and nonlactating mammary glands of dairy cows. mRNA levels from mammary gland biopsies taken during lactation and in the first and second week of the dry period were analysed using quantitative PCR. Five ABC transporter genes, namely ABCA1, ABCA7, ABCG1, ABCG2 and ABCG5, their regulating genes LXRalpha, PPARgamma, SREBP1 and the milk proteins lactoferrin and alpha-lactalbumin were assessed. A significantly enhanced expression in the dry period was observed for ABCA1 while a significant decrease of expression in this period was detected for ABCA7, ABCG2, SREBP1 and alpha-lactalbumin. ABCG1, ABCG5, LXRalpha, PPARgamma and lactoferrin expression was not altered between lactation and dry period. These results indicate that candidate ABC transporters involved in lipid and cholesterol transport show differential mRNA expression between lactation and the dry period. This may be due to physiological changes in the mammary gland such as immigration of macrophages or the accumulation of fat due to the loss of liquid in the involuting mammary gland. The current mRNA expression analysis of transporters in the mammary gland is the prerequisite for elucidating novel molecular mechanisms underlying cholesterol and lipid transfer into milk.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ATP-binding cassette (ABC) transporter TAP translocates peptides from the cytosol to awaiting MHC class I molecules in the endoplasmic reticulum. TAP is made up of the TAP1 and TAP2 polypeptides, which each possess a nucleotide binding domain (NBD). However, the role of ATP in peptide binding and translocation is poorly understood. We present biochemical and functional evidence that the NBDs of TAP1 and TAP2 are non-equivalent. Photolabeling experiments with 8-azido-ATP demonstrate a cooperative interaction between the two NBDs that can be stimulated by peptide. The substitution of key lysine residues in the Walker A motifs of TAP1 and TAP2 suggests that TAP1-mediated ATP hydrolysis is not essential for peptide translocation but that TAP2-mediated ATP hydrolysis is critical, not only for translocation, but for peptide binding.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The adrenoleukodystrophy protein (ALDP) and the 70-kDa peroxisomal membrane protein (PMP70) are half ATP-binding cassette (ABC) transporters in the human peroxisome membrane. ALDP and PMP70 share sequence homology and both are implicated in genetic diseases. PXA1 and YKL741 are Saccharomyces cerevisiae genes that encode homologs of ALDP and PMP70. Pxa1p, a putative ortholog of ALDP, is involved in peroxisomal beta-oxidation of fatty acids while YKL741 is an open reading frame found by the yeast genome sequencing project. Here we designate YKL741 as PXA2 and show that its protein product, Pxa2p, like Pxa1p, is associated with peroxisomes but not required for their assembly. Yeast strains carrying gene disruption of PXA1, PXA2, or both have similar and, in the case of the latter, nonadditive phenotypes. We also find that the stability of Pxa1p, but not Pxa2p, is markedly reduced in the absence of the other. Finally, we find that Pxa1p and Pxa2p coimmuno-precipitate. These genetic and physical data suggest that Pxa1p and Pxa2p heterodimerize to form a complete peroxisomal ABC transporter involved in fatty acid beta-oxidation. This result predicts the presence of similar heterodimeric ABC transporters in the mammalian peroxisome membrane.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ATP-binding cassette (ABC) transporters are encoded by large gene families in plants. Although these proteins are potentially involved in a number of diverse plant processes, currently, very little is known about their actual functions. In this paper, through a cDNA microarray screening of anonymous cDNA clones from a subtractive library, we identified an Arabidopsis gene (AtPDR12) putatively encoding a member of the pleiotropic drug resistance (PDR) subfamily of ABC transporters. AtPDR12 displayed distinct induction profiles after inoculation of plants with compatible and incompatible fungal pathogens and treatments with salicylic acid, ethylene, or methyl jasmonate. Analysis of AtPDR12 expression in a number of Arabidopsis defense signaling mutants further revealed that salicylic acid accumulation, NPR1. function, and sensitivity to jasmonates and ethylene were all required for pathogen-responsive expression of AtPDR12. Germination assays using seeds from an AtPDR12 insertion line in the presence of sclareol resulted in lower germination rates and much stronger inhibition of root elongation in the AtPDR12 insertion line than in wild-type plants. These results suggest that AtPDR12 may be functionally related to the previously identified ABC transporters SpTUR2 and NpABC1, which transport sclareol. Our data also point to a potential role for terpenoids in the Arabidopsis defensive armory.