87 resultados para AZOBENZENE
Resumo:
Azobenzenes (1,2-diaryldiazenes) are very important organic pigments, and they have a unique place in the field of photoresponsive conjugated molecules due to their (usually) reversible E/Z photoisomerisation. The current intense interest in molecular analogues of mechanical components and information storage and processing elements has stimulated research into conjugated molecules whose shape and/or optical properties can be switched electro- or photochemically. Among the classes of conjugated pigments being explored in these contexts are the porphyrinoids, which offer advantages of intense light absorption, a variety of accessible oxidation states, and synthetic control of properties through peripheral or central substitution. Extension of porphyrinoid conjugation can be achieved by linking the peripheral carbons either by three direct bonds (as in the “porphyrin tapes” of Osuka et al.) or through potentially conjugating bridges such as alkenes or, even better, alkynes.
Resumo:
Here, we present the synthesis, photochemical, and DNA binding properties of three photoisomerizable azobenzene−distamycin conjugates in which two distamycin units were linked via electron-rich alkoxy or electron-withdrawing carboxamido moieties with the azobenzene core. Like parent distamycin A, these molecules also demonstrated AT-specific DNA binding. Duplex DNA binding abilities of these conjugates were found to depend upon the nature and length of the spacer, the location of protonatable residues, and the isomeric state of the conjugate. The changes in the duplex DNA binding efficiency of the individual conjugates in the dark and with their respective photoirradiated forms were examined by circular dichroism, thermal denaturation of DNA, and Hoechst displacement assay with poly[d(A-T).d(T-A)] DNA in 150 mM NaCl buffer. Computational structural analyses of the uncomplexed ligands using ab initio HF and MP2 theory and molecular docking studies involving the conjugates with duplex d[(GC(AT)10CG)]2 DNA were performed to rationalize the nature of binding of these conjugates.
Resumo:
Amphiphilic sugars exhibit both lyotropic and thermotropic liquid-crystalline behavior. Interestingly, in spite of the abundance of chiral centers in amphiphilic sugars, their liquid-crystalline phases do not exhibit macroscopic chirality. Herein, we report on the first observation of macroscopic chirality in sugar-based bolaamphiphiles containing free hydroxyl groups. The manifestation of the chiral smectic C* phase in these bolaamphiphiles has been observed to be critically dependent on the presence of the azobenzene moiety and the suitable length of the methylene spacer. These results imply that by suitable selection of linker groups, mesogenic bolaamphiphiles possessing macroscopic chirality can be designed using a variety of naturally available sugar derivatives.
Resumo:
Coating of azobenzene chromophore with multivalent sugar ligands has been accomplished. Such sugar coating allows the study of the isomerization properties of this chromophore in aqueous solutions. The predominantly cis-isomer-containing photostationary state (PS) mixture of these azobenzene derivatives is found to be stable for hours. The rate constants for their isomerization, as well as the Arrhenius activation energies, are determined experimentally. An assessment of the lectin binding properties of the lactoside bearing isomeric azobenzene derivatives, by isothermal calorimetric methods, reveals the existence of an unusual cooperativity in their binding to lectin peanut agglutinin. Thermodynamic parameters evaluated for the trans and the PS mixture are discussed, in detail, for the lactoside bearing bivalent azobenzene derivative.
Resumo:
Time-dependent wavepacket propagation techniques have been used to calculate the absorption spectrum and the resonance Raman excitation profiles of the n-pi* transition in azobenzene. A comparison of both the calculated absorption spectrum and excitation profiles with experiment has been made. From an analysis of the data, it is concluded that the Raman intensities are mainly due to resonance from the n-pi* transition and not from the pre-resonance of the pi-pi* transition, as reported earlier. We find that the isomerization pathway is through the inversion mechanism rather than by rotation. This is the first direct spectroscopic evidence for the isomerization pathway in trans-azobenzene.
Resumo:
We analyze the origin of de-enhancement for a number of vibrational modes in the 2(1)A(g) excited state of trans-azobenzene. We have used the time-dependent wave packet analysis of the RR intensities by including the multimode damping effects in the calculation. This avoids the use of unrealistically large values for the damping parameter. It is concluded that the de-enhancement is caused by the interference between the two uncoupled electronic states, and that the intensities observed under the so-called symmetry forbidden 2(1)A(g) <-- 1(1)A(g) transition are purely due to resonance excitation. It is also observed that the use of the time-dependent approach to study the de-enhancement effects caused by multiple electronic states on the RR intensities is not necessarily useful if one is interested in the structural dynamics.
Resumo:
Dendritic rnicroenvironments defined by dynamic internal cavities of a dendrimer were probed through geometric isomerization of stilbene and azobenzene. A third-generation poly(alkyl aryl ether) dendrimer with hydrophilic exterior and hydrophobic interior was used as a reaction cavity in aqueous medium. The dynamic inner cavity sizes were varied by utilizing alkyl linkers that connect the branch junctures from ethyl to n-pentyl moiety (C(2)G(3)-C(5)G(3)). Dendrimers constituted with n-pentyl linker were found to afford higher solubilities of stilbene and azobenzene. Direct irradiation of trans-stilbene showed that C(5)G(3) and C(4)G(3) dendrimers afforded considerable phenanthrene formation, in addition to cis-stilbene, whereas C(3)G(3) and C(2)G(3) gave only cis-stilbene. An electron-transfer sensitized trans-cis isomerization, using cresyl violet perchlorate as the sensitizer, also led to similar results. Thermal isomerization of cis-azobenzene to trans-azobenzene within dendritic microenvironments revealed that the activation energy of the cis- to trans-isomer was increasing in the series C(5)G(3) < C(4)G(3) < C(3)G(3)
Resumo:
We report the in situ formation of two novel metal-organic frameworks based on terbium and dysprosium ions using azobenzene-4,4-dicarboxylic acid (H(2)abd) as ligand, synthesized by soft hydrothermal routes. Both materials show isostructural three-dimensional networks with channels along a axis and display intense photoluminescence properties in the solid state at room temperature. Textural properties of the metal-organic frameworks (MOFs) have been fully characterized although no appreciable porosity was obtained. Magnetic properties of these materials were studied, highlighting the dysprosium material displays slightly frequency-dependent out of phase signals when measured under zero external field and under an applied field of 1000 Oe.
Resumo:
We synthesized 1,2,3-triazole-linked azobenzene dendrons of four generations. No protection-deprotection approach was needed during the generation development via click reaction. The photoisomerization of azobenzene dendrons was Studied using UV-vis spectra. The cis isomers of these dendrons were more stable than trans isomers in the dark; however, the cis isomers could be quickly converted to trans forms under visible light exposure in seconds. The trans form could change to cis form reversibly by UV irradiation as well.
Resumo:
The characteristic electrochemical mechanics of azobenzene derivative self-assembled monolayers is discussed in present paper. It is presented that the structure inhibition is one of the most important factors in the increase of electrochemical reactive energy. A corresponding mathematical model was established based on Levich and Marcus's theory. Moreover, computational program was written to simulate the decrease of apparent rate constant (k(app)) of electron transfer with increasing surface concentration.
Resumo:
The infrared spect ra of N-n-(4-nitrophenyl)azophenyloxyalkyldiethanolamines (Cn) are examined in the range of 4000-400 cm(-1) at different temperatures and the assignment of the fundamental vibrations given. Based on (1) the localization of the broad absorption band at 3456 cm(-1), and (2) attribution of the associated OH bands centred at 1410-1390, 1100, and 650-634 cm(-1) to, respectively delta OH deformation, nu C-O stretching and gamma OH out-of-plane bending, intermolecular hydrogen bonding between OH groups in the crystalline, liquid crystalline and isotropic states is proposed. By considering the results of FTIR, WAXD and DSC measurements, the molecular arrangement of C10 in its smectic A phase as consisting of hydrogen bonding and strong interaction between dipolar groups (NO,) is proposed. This may explain the high stability and high orientational ordering property of Cn compounds in the liquid crystalline state compared with that of n-bromo-1-[4-(4-nitrophenyl)azophenyl]oxyalkanes (Bn).
Resumo:
On the basis of AM1 and INDO/CI methods, we devise the program for the calculation of nonlinear second-order optical susceptibilities beta(ijk) and perform systematic theoretical studies on the nonlinear optical second-order properties of azobenzene series molecules, i. e. on the basis of [GRAPHICS] we induced different donors on the left side of phenyl ring, and different accepters on the right side of phenyl ring, and examined the rule of beta variation. The regularity summarized from the calculated results has been explained micromechanically. Finally, a molecule having a big nonlinear second-order optical susceptibility has been designed.
Resumo:
Monolayers of liquid-crystalline polyacrylate containing para-nitro azobenzene (HP6) on the water subphase were characterized by the surface pressure (pi)-area per monomer unit (A) isotherm and were successfully transferred onto glass substrates by the vertical lifting method. The monolayer Langmuis-Blodgett (LB) films transferred at different surface pressures were studied by electron diffraction. The thickness of the monolayer LB film was measured by the transmission electron microscopy folding method. The results of the electron diffraction of the monolayer LB films of HP6 showed that a two-dimensional arrangement exists in the transferred films. According to the results of the pi-A isotherm, electron diffraction and the measured thickness of the monolayer LB film, a molecular arrangement model of HP6 on the water subphase was proposed. The ordered monolayer formation of HP6 showed it to be promising as a second-order non-linear optical material.