881 resultados para AZO GROUPS
Resumo:
A series of liquid crystalline copolymers, poly{2-hydroxyethyl methacrylate}-co-{6-[4-(S-2-methyl-1-butyloxycarbonylphenylazo)phenoxy]hexyl methacrylate} with an azobenzene moiety as photoreactive mesogenic unit, was prepared and investigated by using DSC, polarized optical microscopy and X-ray diffraction. The results show that these polymers exhibit smectic phases. Z-type Langmuir-Blodgett films of these copolymers were successfully deposited onto calcium fluoride and quartz. Reversible homeotropic and planar liquid crystal alignments were induced by using the photochromism of the LB films of one of the copolymers containing 20.6 mol % of the azo unit.
Resumo:
The reduction process of the azo dyes reactive red 120 and reactive green 19 was investigated in B-R buffer pH 2-12 by differential pulse polarography, cyclic voltammetry and controlled potential electrolyse. The reactive red 120 presents two azo groups reducible in a single step of 8 electrons followed by simultaneous reduction of the two clorotriazine groups. The reduction of reactive green 19 is complicated by the presence of azo groups and chlorotriazine moyeties in a non symmetrical molecule. The peaks can be monitored for dyes determination in concentration level up to 1x10(-7) mol/L and 1x10(-9) mol/L using differential pulse polarography or cathodic stripping voltammetry.
Resumo:
Pós-graduação em Ciências Biológicas (Microbiologia Aplicada) - IBRC
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Comparative Analysis of Azo Dye Biodegradation by Aspergillus oryzae and Phanerochaete chrysosporium
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
An azo-group containing polybutadiene macroinitiator was prepared by Pinner synthesis and characterized by IR, NMR, GPC, viscosity and elemental measurements. The macroinitiator was further use to polymerize acrylamide (AAm) in benzene to form polybutadiene/polyacrylamide (PBD/PAAm) block copolymers. High conversion of AAm was obtained over a wide range of monomer/macroinitiator ratios. The PBD/PAAm block copolymers were found to have excellent solvent resistance.
Resumo:
The electrochemical reduction of two reactive dyes: Procion Red HE-3B 9 (RR120) and Procion Green HE-4BD (RG19) was investigated using cyclic voltammetry, differential pulse and DC, polarography, chronoamperometry and controlled potential electrolysis at mercury electrodes. The bis-azo groups of the RR120 dye are reduced together in one single step of four electrons, the bis-azo groups of the RG19 dye are reduced in two steps owing to the difference in the electron densities promoted by the different substituents in the benzene rings adjacent to the azo groups. The bis-monochlorotriazine reactive groups in both dyes are reduced only in acidic medium in their protonated form, leading to the reduction of the triazine groups. The reduction mechanism of both reactive dyes is discussed. Both dyes can be quantified in aqueous medium by differential pulse polarography in the concentration range of 1 x 10(-7) mol L-1 to 1 x 10(-5) mol L-1 by monitoring the reduction of the chromophore group or the reactive group.
Resumo:
Two reactive dyes, C.I. Reactive Red 120 (RR120) and C.I. Reactive Green 19 (RG19), each bearing two azo groups as the chromophoric moiety and two monochloro-s-triazine groups as reactive groups, can be detected at nanomolar levels using cathodic stripping voltammetry. Linear calibration graphs were obtained for both reactive dyes, from 0.015 to 0.14 mu mol l(-1) for RR120 in pH 4 buffer and from 0.012 to 0.26 mu mol l(-1) for RG19 in pH 3 buffer, using a preconcentration at 0 V during 180 and 240 s on the mercury electrode, respectively. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
1,2-Bis[10,15-di(3,5-di-tert-butyl)phenylporphyrinatonickel(II)-5-yl]diazene was synthesised via copper catalysed coupling of aminated nickel(II) 5,10-diarylporphyrin (“corner porphyrin”) and its X-ray crystal structure was determined. Two different crystals yielded different structures, one with the free meso positions in a trans-like orientation, and the other with a cis-like disposition. The free meso positions of the obtained dimer have been further functionalised while the synthesis of a zinc analogue has so far been unsuccessful. The X-ray crystal structure of the dinitro derivative of the dinickel(II) azoporphyrin was determined, and the structure showed a cis-like disposition of the nitro groups.
Resumo:
Porphyrins are one of Nature’s essential building blocks that play an important role in several biological systems including oxygen transport, photosynthesis, and enzymes. Their capacity to absorb visible light, facilitate oxidation and reduction, and act as energy- and electron-transfer agents, in particular when several are held closely together, is of interest to chemists who seek to mimic Nature and to make and use these compounds in order to synthesise novel advanced materials. During this project 26 new 5,10-diarylsubstituted porphyrin monomers, 10 dimers, and 1 tetramer were synthesised. The spectroscopic and structural properties of these compounds were investigated using 1D/2D 1H NMR, UV/visible, ATR-IR and Raman spectroscopy, mass spectrometry, X-ray crystallography, electrochemistry and gel permeation chromatography. Nitration, amination, bromination and alkynylation of only one as well as both of the meso positions of the porphyrin monomers have resulted in the expansion of the synthetic possibilities for the 5,10-diarylsubstituted porphyrins. The development of these new porphyrin monomers has led to the successful synthesis of new azo- and butadiyne-linked dimers. The functionalisation of these compounds was investigated, in particular nitration, amination, and bromination. The synthesised dimers containing the azo bridge have absorption spectra that show a large split in the Soret bands and intense Q-bands that have been significantly redshifted. The butadiyne dimers also have intense, red-shifted Q-bands but smaller Soret band splittings. Crystal structures of two new azoporphyrins have been acquired and compared to the azoporphyrin previously synthesised from 5,10,15- triarylsubstituted porphyrin monomers. A completely new cyclic porphyrin oligomer (CPO) was synthesised comprising four porphyrin monomers linked by azo and butadiyne bridges. This is the first cyclic tetramer that has both the azo and butadiyne linking groups. The absorption spectrum of the tetramer exhibits a large Soret split making it more similar to the azo- dimers than the butadiyne-linked dimers. The spectroscopic characteristics of the synthesised tetramer have been compared to the characteristics of other cyclic porphyrin tetramers. The collected data indicate that the new synthesised cyclic tetramer has a more efficient ð-overlap and a better ground state electronic communication between the porphyrin rings.
Resumo:
The crown ethers, 2,3-benzo-1,4,7,10,13-pentaoxa-cyclopentadeca-2-ene and 2,3, ll,12-dibenzo-l,4,7,10,13,16-hexaoxscyclooctadeca-2,11-diene are incorporated into H,N'-ethylenebis(acetylacetoneimino) nickel(II) and copper(II), phenol, and β-naphthol by diazo coupling reactions. The selective nature of the coupling reaction has-been demonstrated by the isolation of both asymmetric mono- and symmetric bis(glyoxalarylcrownhydrazoneimino) metal(II) complexes. An interesting binuclear complex containing two intramolecularly rearranged (glyoxal-hydrazonearylimino) metal(II) groups joined by 18-crown-6 result8 when bis(arenediazonium)-18-crown-6 is coupled with the metal(I1) Schiff bases. The substituted ethers form cationic salts with NaClO4, KCNS, NH4CNS, 14g(CNS)2 and Ca(CNS)2. All the synthesised ethers exhibit ion selectivity sequence as K+ > Na+ and Ca2+ > Mg2+.