699 resultados para AUSTENITIC STAINLESS STEELS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pitting corrosion of stainless steels, one of the classical problems in materials science and electrochemistry, is generally believed to originate from the local dissolution in MnS inclusions, which are more or less ubiquitous in stainless steels. However, the initial location where MnS dissolution preferentially occurs is known to be unpredictable, which makes pitting corrosion a major concern. In this work we show, at an atomic scale, the initial site where MnS starts to dissolve in the presence of salt water. Using in situ ex-environment transmission electron microscopy (TEM), we found a number of nano-sized octahedral MnCr2O4 crystals (with a spinel structure and a space group of Fd (3) over barm) embedded in the MnS medium, generating local MnCr2O4/MnS nano-galvanic cells. The TEM experiments combined with first-principles calculations clarified that the nano-octahedron, enclosed by eight {1 1 1} facets with metal terminations, is "malignant", and this acts as the reactive site and catalyses the dissolution of MnS. This work not only uncovers the origin of MnS dissolution in stainless steels, but also presents an atomic-scale evolution in a material's failure which may occur in a wide range of engineering alloys and biomedical instruments serving in wet environments. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two simulative test methods were used to study galling in sheet forming of two types of stainlesssteel sheet: austenitic (EN 1.4301) and lean duplex LDX 2101 (EN 1.4162) in different surface conditions. Thepin-on-disc test was used to analyse the galling resistance of different combinations of sheet materials and lubricants. The strip reduction test, a severe sheet forming tribology test was used to simulate the conditionsduring ironing. This investigation shows that the risk of galling is highly dependent on the surface texture of theduplex steel. Trials were also performed in an industrial tool used for high volume production of pumpcomponents, to compare forming of LDX 2101 and austenitic stainless steel with equal thickness. The forming forces, the geometry and the strains in the sheet material were compared for the same component.It was found that LDX steels can be formed to high strain levels in tools normally applied for forming ofaustenitic steels, but tool adaptations are needed to comply with the higher strength and springback of thematerial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Damage tolerance of high strength cold-drawn ferritic–austenitic stainless steel wires is assessed by means of tensile fracture tests of cracked wires. The fatigue crack is transversally propagated from the wire surface. The damage tolerance curve of the wires results from the empirical failure load when given as a function of crack depth. As a consequence of cold drawing, the wire microstructure is orientated along its longitudinal axis and anisotropic fracture behaviour is found at macrostructural level at the tensile failure of the cracked specimens. An in situ optical technique known as video image correlation VIC-2D is used to get an insight into this failure mechanism by tensile testing transversally fatigue cracked plane specimens extracted from the cold-drawn wires. Finally, the experimentally obtained damage tolerance curve of the cold-drawn ferritic–austenitic stainless steel wires is compared with that of an elementary plastic collapse model and existing data of two types of high strength eutectoid steel currently used as prestressing steel for concrete.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high-temperature oxidation behavior of modified 304 austenitic stainless steels in a water vapor atmosphere was investigated. Samples were prepared by various thermo mechanical treatments to result in different grain sizes in the range 8-30 mu m. Similar I 3 pound grain boundary fraction was achieved to eliminate any grain-boundary characteristics effect. Samples were oxidized in an air furnace at 700 A degrees C with 20 % water vapor atmosphere. On the fine-grained sample, a uniform Cr2O3 layer was formed, which increased the overall oxidation resistance. Whereas on the coarse-grained sample, an additional Fe2O3 layer formed on the Cr-rich oxide layer, which resulted in a relatively high oxidation rate. In the fine-grained sample, grain boundaries act as rapid diffusion paths for Cr and provided enough Cr to form Cr2O3 oxide on the entire sample surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold-worked austenitic stainless steels have been subject to a pulsed electrochemical treatment in fairly concentrated aqueous solutions of sodium nitrite. The electrochemical reactions that occur transform the strain-induced martensite phase, originally formed by the cold work, back to the austenite phase. However, unlike the conventional thermal annealing process, electrochemically induced surface annealing also hardens the surface of the alloy. Because the process causes transformation of the surface martensite, we term it "electrochemical surface annealing", despite the fact that it results in an increase in surface hardness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In corrosion medium, metals can deform under tensile stress and form a new active surface with the anodic dissolution of the metals being accelerated. At the same time, the anodic dissolution may accelerate the deformation of the metals. The synergy can lead to crack nucleation and development and shorten the service life of the component. Austenitic stainless steel in acidic chloride solution was in active dissolution condition when stress corrosion cracking (SCC) occurred. It is reasonable to assume that the anodic dissolution play an important role, so it's necessary to study the synergy between anodic dissolution and deformation of austenitic stainless steels. The synergy between deformation and anodic dissolution of AISI 321 austenitic stainless steel in an acidic chloride solution was studied in this paper. The corrosion rate of the steel increased remarkably due to the deformation-accelerated anodic and cathodic processes. The creep rate was increased while the yield strength was reduced by anodic dissolution. The analysis by thermal activation theory of deformation showed a linear relationship between the logarithm of creep rate and the logarithm of anodic cur-rent. Besides, the reciprocal of yield strength was also linearly dependent on the logarithm of anodic current. The theoretical deductions were in good agreement with experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The most important property of austenitic stainless steels is corrosion resistance. In these steels, the transition between paramagnetic and ferromagnetic conditions occurs at low temperatures. Therefore, the use of austenitic stainless steels in conditions in which ferromagnetism absence is important can be considered. On the other hand, the formation of strain-induced martensite is detected when austenitic stainless steels are deformed as well as machined. The strain-induced martensite formed especially in the machining process is not uniform through the chip and its formation can also be related to the Md temperature. Therefore, both the temperature distribution and the gradient during the cutting and chip formation are important to identify regions in which martensite formation is propitiated. The main objective here is evaluate the strain-induced martensite formation throughout machining by observing microstructural features and comparing these to thermal results obtained through finite element method analysis. Results show that thermal analysis can give support to the martensite identified in the microstructural analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The water storage tanks of hotel trains suffered pitting corrosion. To identify the cause, the tanks were subjected to a detailed metallographic study and the chemical composition of the austenitic stainless steels used in their construction was determined. Both the tank water and the corrosion products were further examined by physicochemical and microbiological testing. Corrosion was shown to be related to an incompatibility between the chloride content of the water and the base and filler metals of the tanks. These findings formed the basis of recommendations aimed at the prevention and control of corrosion in such tanks. Se han detectado problemas de corrosión por picaduras en los depósitos de agua de trenes hotel. Para identificar las causas se llevó a cabo un detallado estudio metalográfico así como de la composición química de los aceros inoxidables austeníticos utilizados en su construcción. También se realizaron estudios fisicoquímicos y microbiológicos de los productos de corrosión. Se ha encontrado que los problemas de corrosión están relacionados con la incompatibilidad entre el contenido en cloruros del agua y los metales base y de aporte de la soldadura de los tanques. En base a estos hallazgos se proponen una serie de recomendaciones encaminadas a la prevención y control de la corrosión de dichos depósitos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High chromium content is responsible for the formation of a protective passive surface layer on austenitic stainless steels (ASS). Due to their larger amounts of chromium, superaustenitic stainless steels (SASS) can be chosen for applications with higher corrosion resistance requirements. However, both of them present low hardness and wear resistance that has limited their use for mechanical parts fabrication. Plasma nitriding is a very effective surface treatment for producing harder and wear resistant surface layers on these steel grades, without harming their corrosion resistance if low processing temperatures are employed. In this work UNS S31600 and UNS S31254 SASS samples were plasma nitrided in temperatures from 400 °C to 500 °C for 5 h with 80% H 2-20% N2 atmosphere at 600Pa. Nitrided layers were analyzed by optical (OM) and transmission electron microscopy (TEM), x-ray diffraction (XRD), and Vickers microhardness testing. Observations made by optical microscopy showed that N-rich layers were uniform but their thicknesses increased with higher nitriding temperatures. XRD analyses showed that lower temperature layers are mainly composed by expanded austenite, a metastable nitrogen supersaturated phase with excellent corrosion and tribological properties. Samples nitrided at 400 °C produced a 5 μm thick expanded austenite layer. The nitrided layer reached 25 lm in specimens treated at 500 °C. There are indications that other phases are formed during higher temperature nitriding but XRD analysis was not able to determine that phases are iron and/or chromium nitrides, which are responsible for increasing hardness from 850 up to 1100 HV. In fact, observations made by TEM have indicated that formation of fine nitrides, virtually not identified by XRD technique, can begin at lower temperatures and their growth is affected by both thermodynamical and kinetics reasons. Copyright © 2012 by ASTM International.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new series of austenitic stainless steels-Nb stabilized, without Mo additions, non-susceptible to delta ferrite formation and devoid of intemetallic phases (sigma and chi), without deformation induced martensite is being developed, aiming at high temperature applications as well as for corrosive environments. The base steel composition is a 15Cr-15Ni with normal additions of Nb of 0.5, 1.0 and 2 wt%. Mechanical properties, oxidation and corrosion resistance already have been invetigated in previous papers. In this paper, the effects of Nb on the SFE, strain hardening and recrystallization resistance are evaluated with the help of Adaptive Neural Networks (ANN).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lead bismuth eutectic (LBE) is a possible coolant for fast reactors and targets in spallation neutron sources. Its low melting point, high evaporation point, good thermal conductivity, low reactivity, and good neutron yield make it a safe and high performance coolant in radiation environments. The disadvantage is that it is a corrosive medium for most steels and container materials. This study was performed to evaluate the corrosion behavior of the austenitic stainless steel D9 in oxygen controlled LBE. In order to predict the corrosion behavior of steel in this environment detailed analyses have to be performed on the oxide layers formed on these materials and various other relevant materials upon exposure to LBE. In this study the corrosion/oxidation of D9 stainless steel in LBE was investigated in great detail. The oxide layers formed were characterized using atomic force microscopy, magnetic force microscopy, nanoindentation, and scanning electron microscopy with wavelength-dispersive spectroscopy (WDS) to understand the corrosion and oxidation mechanisms of D9 stainless steel in contact with the LBE. What was previously believed to be a simple double oxide layer was identified here to consist of at least 4 different oxide layers. It was found that the inner most oxide layer takes over the grain structure of what used to be the bulk steel material while the outer oxide layer consists of freshly grown oxides with a columnar structure. These results lead to a descriptive model of how these oxide layers grow on this steel under the harsh environments encountered in these applications.