108 resultados para ATPases
Resumo:
The epidermis is the upper layer of the skin and keratinocytes are its most abundant cells. Tight junctions are cell junctions located in the granular layer of the epidermis. They maintain the polarity of the cells and regulate the movement of water-soluble molecules. Epidermal tight junctions may lose their integrity when there are defects in intercellular calcium regulation. Hailey-Hailey and Darier´s disease are dominantly inherited, blistering skin diseases. Hailey-Hailey disease is caused by mutations in the ATP2C1 gene encoding a calcium/manganese ATPase SPCA1 of the Golgi apparatus. Darier´s disease is caused by mutations in the ATP2A2 gene encoding a calcium ATPase SERCA2 of the endoplasmic reticulum. p38 regulates the differentiation of keratinocytes. The overall regulation of epidermal tight junctions is not well understood. The present study examined the regulation of tight junctions in the human epidermis with a focus on calcium ATPases and p38. Skin from Hailey-Hailey and Darier´s disease patients was studied by using immunofluorescence labeling which targeted intercellular junction proteins. Transepidermal water loss was also measured. ATP2C1 gene expression was silenced in cultured keratinocytes, by siRNA, which modeled Hailey-Hailey disease. Expression of intercellular junction proteins was studied at the mRNA and protein levels. Squamous cell carcinoma and normal human keratinocytes were used as a model for impaired and normal keratinocyte differentiation, and the role of p38 isoforms alpha and delta in the regulation of intercellular junction proteins was studied. Both p38 isoforms were silenced by adenovirus cell transduction, chemical inhibitors or siRNA and keratinocyte differentiation was assessed. The results of this thesis revealed that: i.) intercellular junction proteins are expressed normally in acantholytic skin areas of patients with Hailey-Hailey or Darier´s disease but the localization of ZO-1 expanded to the stratum spinosum; ii.) tight junction proteins, claudin-1 and -4, are regulated by ATP2C1 in non-differentiating keratinocytes; and iii.) p38 delta regulates the expression of tight junction protein ZO-1 in proliferating keratinocytes and in squamous cell carcinoma derived cells. ZO-1 silencing, however, did not affect the expression of other tight junction proteins, suggesting that they are differently regulated. This thesis introduces new mechanisms involved in the regulation of tight junctions revealing new interactions. It provides novel evidence linking intracellular calcium regulation and tight junctions.
Resumo:
The regulatory function of α1B-adrenoceptors in mammalian heart homeostasis is controversial. The objective of the present study was to characterize the expression/activity of key proteins implicated in cardiac calcium handling (Na+/K+-ATPase and Ca2+-ATPases) and growth (ERK1/2, JNK1/2 and p38) in mice with cardiac-selective overexpression of constitutively active mutant α1B-adrenoceptor (CAMα1B-AR), which present a mild cardiac hypertrophy phenotype. Immunoblot assays showed that myocardial plasma membrane Ca2+-ATPase (PMCA) expression was increased by 30% in CAMα1B-AR mice (N = 6, P < 0.05), although there was no change in sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2) expression. Moreover, total Ca2+-ATPase activity was not modified, but a significant increase in the activity of the thapsigargin-resistant (PMCA) to thapsigargin-sensitive (SERCA) ratio was detected. Neither Na+/K+-ATPase activity nor the expression of α1 and α2 subunit isoforms was changed in CAMα1B-AR mouse hearts. Moreover, immunoblot assays did not provide evidence for an enhanced activation of the three mitogen-activated protein kinases studied in this stage of hypertrophy. Therefore, these findings indicate that chronic cardiac α1B-AR activation in vivo led to mild hypertrophy devoid of significant signs of adaptive modifications concerning primary intracellular calcium control and growth-related proteins, suggesting a minor pathophysiological role of this adrenergic receptor in mouse heart at this stage of development.
Resumo:
Cation-transporting P-type ATPases show a high degree of structural and functional homology. Nevertheless, for many members of this large family, the molecular mechanism of transport is unclear; namely, whether transport is electrogenic or not and if countertransport is involved remains to be established. In a few well-studied cases such as the Na(+)-K(+)-ATPase, plasma membrane Ca(2+) ATPase (PMCA) and sarcoplasmic reticulum Ca(2+) ATPase (SERCA) countertransport has been clearly demonstrated. New data based on the crystal structure of SERCA now strongly indicate that countertransport could be mandatory for all P-type ATPases. This concept should be verified for other known and for all newly characterized P-type ATPases.
ATPases and phosphate exchange activities in magnesium chelatase subunits of Rhodobacter sphaeroides
Resumo:
Three separate proteins, BchD, BchH, and BchI, together with ATP, insert magnesium into protoporphyrin IX. An analysis of ATP utilization by the subunits revealed the following: BchH catalyzed ATP hydrolysis at the rate of 0.9 nmol per min per mg of protein. BchI and BchD, tested individually, had no ATPase activity but, when combined, hydrolyzed ATP at the rate of 117.9 nmol/min per mg of protein. Magnesium ions were required for the ATPase activities of both BchH and BchI+D, and these activities were inhibited 50% by 2 mM o-phenanthroline. BchI additionally catalyzed a phosphate exchange reaction from ATP and ADP. We conclude that ATP hydrolysis by BchI+D is required for an activation step in the magnesium chelatase reaction, whereas ATPase activity of BchH and the phosphate exchange activity of BchI participate in subsequent reactions leading to the insertion of Mg2+ into protoporphyrin IX.
Resumo:
The proton-pumping ATPase (H+-ATPase) of the plant plasma membrane is encoded by two major gene subfamilies. To characterize individual H+-ATPases, PMA2, an H+-ATPase isoform of tobacco (Nicotiana plumbaginifolia), was expressed in Saccharomyces cerevisiae and found to functionally replace the yeast H+-ATPase if the external pH was kept above 5.0 (A. de Kerchove d'Exaerde, P. Supply, J.P. Dufour, P. Bogaerts, D. Thinès, A. Goffeau, M. Boutry [1995] J Biol Chem 270: 23828–23837). In the present study we replaced the yeast H+-ATPase with PMA4, an H+-ATPase isoform from the second subfamily. Yeast expressing PMA4 grew at a pH as low as 4.0. This was correlated with a higher acidification of the external medium and an approximately 50% increase of ATPase activity compared with PMA2. Although both PMA2 and PMA4 had a similar pH optimum (6.6–6.8), the profile was different on the alkaline side. At pH 7.2 PMA2 kept more than 80% of the maximal activity, whereas that of PMA4 decreased to less than 40%. Both enzymes were stimulated up to 3-fold by 100 μg/mL lysophosphatidylcholine, but this stimulation vanished at a higher concentration in PMA4. These data demonstrate functional differences between two plant H+-ATPases expressed in the same heterologous host. Characterization of two PMA4 mutants selected to allow yeast growth at pH 3.0 revealed that mutations within the carboxy-terminal region of PMA4 could still improve the enzyme, resulting in better growth of yeast cells.
Resumo:
The yeast genome encodes seven oxysterol binding protein homologs, Osh1p-Osh7p, which have been implicated in regulating intracellular lipid and vesicular transport. Here, we show that both Osh6p and Osh7p interact with Vps4p, a member of the AAA ( ATPases associated with a variety of cellular activities) family. The coiled-coil domain of Osh7p was found to interact with Vps4p in a yeast two-hybrid screen and the interaction between Osh7p and Vps4p appears to be regulated by ergosterol. Deletion of VPS4 induced a dramatic increase in the membrane-associated pools of Osh6p and Osh7p and also caused a decrease in sterol esterification, which was suppressed by overexpression of OSH7. Lastly, overexpression of the coiled-coil domain of Osh7p (Osh7pCC) resulted in a multi-vesicular body sorting defect, suggesting a dominant negative role of Osh7pCC possibly through inhibiting Vps4p function. Our data suggest that a common mechanism may exist for AAA proteins to regulate the membrane association of yeast OSBP proteins and that these two protein families may function together to control subcellular lipid transport.
Resumo:
The review deals with impairment of Ca2+-ATPases by high glucose or its derivatives in vitro, as well as in human diabetes and experimental animal models. Acute increases in glucose level strongly correlate with oxidative stress. Dysfunction of Ca2+-ATPases in diabetic and in some cases even in nondiabetic conditions may result in nitration of and in irreversible modification of cysteine-674. Nonenyzmatic protein glycation might lead to alteration of Ca2+-ATPase structure and function contributing to Ca2+ imbalance and thus may be involved in development of chronic complications of diabetes. The susceptibility to glycation is probably due to the relatively high percentage of lysine and arginine residues at the ATP binding and phosphorylation domains. Reversible glycation may develop into irreversible modifications (advanced glycation end products, AGEs). Sites of SERCA AGEs are depicted in this review. Finally, several mechanisms of prevention of Ca2+-pump glycation, and their advantages and disadvantages are discussed. © 2013 Informa UK, Ltd.
Resumo:
The immunophilin cochaperones, cyclophilin 40 (CyP40), FKBP51 and FKBP52 and PP5, a serine/threonine protein phosphatase, have been implicated as modulators of steroid receptor function through their association with Hsp90, a molecular chaperone with a key role in steroid hormone signalling. Although progress towards a satisfying definition for the role of these components in steroid receptor complexes has been slow, recent developments arising from novel approaches in both yeast and mammalian systems, together with available crystal structures for Hsp90 and some of these cochaperones, are beginning to provide important clues about their function. Hsp90, recently identified as a member of the GHKL superfamily of ATPases, is the central player in receptor assembly, an energy-driven process that allows receptor and the immunophilins to be proximally located, or to interact directly, on a Hsp90 scaffold. Immunophilin structure, relative abundance, their binding affinity for Hsp90 and their ability to interact with specific receptors may all contribute to a selective preference of the immunophilins for individual receptors. Association of receptors with different immunophilins leads to differential functional consequences for receptor activity. Observations of glucocorticoid resistance in New World primates, attributed to FKBP51 overexpression and incorporation into glucocorticoid receptor complexes, have provided the first evidence that these cochaperones can control hormone-binding affinity. Application of a yeast model to FKBP52 function in the glucocorticoid receptor system has now provided crucial evidence that this immunophilin enhances receptor transcriptional activity by increasing receptor avidity for hormone through PPIase-mediated conformational changes in the ligand-binding domain. A recent novel finding suggests that hormone binding may induce a functional exchange of immunophilins in receptor complexes and that the modified complex directs receptor to the nucleus.
Resumo:
We have characterized the kinetic properties of ectonucleoside triphosphate diphosphohydrolase 1 (E-NTPDase1) from rat osseous plate membranes. A novel finding of the present study is that the solubilized enzyme shows high- and low-affinity sites for the substrate in contrast with a single substrate site for the membrane-bound enzyme. In addition, contrary to the Michaelian chraracteristics of the membrane-bound enzyme, the site-site interactions after solubilization with 0.5% digitonin plus 0.1% lysolecithin resulted in a less active ectonucleoside triphosphate diphosphohydrolase, showing activity of about 398.3 nmol Pi min(-1) mg(-1). The solubilized enzyme has M(r) of 66-72 kDa, and its catalytic efficiency was significantly increased by magnesium and calcium ions; but the ATP/ADP activity ratio was always < 2.0. Partial purification and kinetic characterization of the rat osseous plate E-NTPDase1 in a solubilized form may lead to a better understanding of a possible function of the enzyme as a modulator of nucleotidase activity or purinergic signaling in matrix vesicle membranes. The simple procedure to obtain the enzyme in a solubilized form may also be attractive for comparative studies of particular features of the active sites from this and other ATPases.
Resumo:
An Adobe (R) animation is presented for use in undergraduate Biochemistry courses, illustrating the mechanism of Na(+) and K(+) translocation coupled to ATP hydrolysis by the (Na, K)-ATPase, a P(2c)-type ATPase, or ATP-powered ion pump that actively translocates cations across plasma membranes. The enzyme is also known as an E(1)/E(2)-ATPase as it undergoes conformational changes between the E(1) and E(2) forms during the pumping cycle, altering the affinity and accessibility of the transmembrane ion-binding sites. The animation is based on Horisberger`s scheme that incorporates the most recent significant findings to have improved our understanding of the (Na, K)-ATPase structure function relationship. The movements of the various domains within the (Na, K)-ATPase alpha-subunit illustrate the conformational changes that occur during Na(+) and K(+) translocation across the membrane and emphasize involvement of the actuator, nucleotide, and phosphorylation domains, that is, the ""core engine"" of the pump, with respect to ATP binding, cation transport, and ADP and P(i) release.
Resumo:
We have observed previously that Ca2+ pump-mediated Ca2+ efflux is elevated in cultured aortic smooth muscle cells from spontaneously hypertensive rats compared to those from Wistar-Kyoto rat controls. The objective of this work was to determine if these strains differ in mRNA levels for the PMCA1 isoform of the plasma membrane Ca2+-ATPase and the SERCA2 isoform of the sarcoplasmic reticulum Ca2+-ATPase. mRNA levels were compared in cultured aortic smooth muscle cells from 10-week-old male rats. PMCA1 and SERCA2 mRNA levels were elevated in SHR compared to WKY. Angiotensin II increased the level of PMCA1 and SERCA2 mRNA in both strains. These studies provide further evidence for alterered Ca2+ homeostasis in hypertension at the level of Ca2+ transporting ATPases in the spontaneously hypertensive rat model. These data are also consistent with the hypothesis that the expression of these two Ca2+ pumps may be linked. (C) 1997 Academic Press
Resumo:
Wilson disease is an autosomal recessive copper transport disorder resulting from defective biliary excretion of copper and subsequent hepatic copper accumulation and liver failure if not treated. The disease is caused by mutations in the ATP7B (WND) gene, which is expressed predominantly in the liver and encodes a copper-transporting P-type ATPase that is structurally and functionally similar to the Menkes protein (MNK), which is defective in the X-linked copper transport disorder Menkes disease. The toxic milk (tx) mouse has a clinical phenotype similar to Wilson disease patients and, recently, the tx mutation within the murine WND homologue (Wnd) of this mouse was identified, establishing it as an animal model for Wilson disease. In this study, cDNA constructs encoding the wild-type (Wnd-wt) and mutant (Wnd-tx) Wilson proteins (Wnd) were generated and expressed in Chinese hamster ovary (CHO) cells. The fx mutation disrupted the copper-induced relocalization of Wnd in CHO cells and abrogated Wnd-mediated copper resistance of transfected CHO cells. In addition, co-localization experiments demonstrated that while Wnd and MNK are located in the trans-Golgi network in basal copper conditions, with elevated copper, these proteins are sorted to different destinations within the same cell, Ultrastructural studies showed that with elevated copper levels, Wnd accumulated in large multivesicular structures resembling late endosomes that may represent a novel compartment for copper transport. The data presented provide further support for a relationship between copper transport activity and the copper-induced relocalization response of mammalian copper ATPases, and an explanation at a molecular level for the observed phenotype of fx mice.
Resumo:
Changes in the regulation of connective tissue ATP-mediated mechano-transduction and remodeling may be an important link to the pathogenesis of chronic pain. It has been demonstrated that mast cell-derived histamine plays an important role in painful fibrotic diseases. Here we analyzed the involvement of ATP in the response of human subcutaneous fibroblasts to histamine. Acute histamine application caused a rise in intracellular Ca2+ ([Ca2+]i) and ATP release from human subcutaneous fibroblasts via H1 receptor activation. Histamine-induced [Ca2+]i rise was partially attenuated by apyrase, an enzyme that inactivates extracellular ATP, and by blocking P2 purinoceptors with pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) tetrasodium salt and reactive blue 2. [Ca2+]i accumulation caused by histamine was also reduced upon blocking pannexin-1 hemichannels with 10Panx, probenecid, or carbenoxolone but not when connexin hemichannels were inhibited with mefloquine or 2-octanol. Brefeldin A, an inhibitor of vesicular exocytosis, also did not block histamine-induced [Ca2+]i mobilization. Prolonged exposure of human subcutaneous fibroblast cultures to histamine favored cell growth and type I collagen synthesis via the activation of H1 receptor. This effect was mimicked by ATP and its metabolite, ADP, whereas the selective P2Y1 receptor antagonist, MRS2179, partially attenuated histamine-induced cell growth and type I collagen production. Expression of pannexin-1 and ADPsensitive P2Y1 receptor on human subcutaneous fibroblasts was confirmed by immunofluorescence confocal microscopy and Western blot analysis. In conclusion, histamine induces ATP release from human subcutaneous fibroblasts, via pannexin-1 hemichannels, leading to [Ca2+]i mobilization and cell growth through the cooperation of H1 and P2 (probably P2Y1) receptors.
Resumo:
A resistência aos antibióticos em bactérias Gram-negativas pode ser aumentada pela extrusão de antibióticos através de sistemas de efluxo. Em Escherichia coli, o principal sistema de efluxo é o AcrAB-TolC o qual tem como principal fonte energética a força proto-motriz. Este trabalho pretendeu estudar alguns aspectos essenciais da bioenergética na actividade de efluxo de E. coli usando três estirpes bem caracterizadas genotipica e fenotipicamente. Foi utilizado um método fluorimétrico semi-automático no qual a fluorescência do fluorocromo brometo de etídeo, substrato de bombas de efluxo foi seguida, permitindo a medição em tempo real da actividade de efluxo e acumulação de fluorocromo (inibição do efluxo). A utilização de brometo de etídeo é particularmente vantajosa pois emite baixa fluorescência no exterior da célula bacteriana tornando-se extremamente fluorescente no seu interior. Este método é uma nova aplicação do termociclador em tempo real RotorGeneTM 3000 que permite o cálculo da cinética de transporte reflectindo o balanço entre acumulação de substrato por difusão passiva através da membrana e a sua extrusão/efluxo, proporcionando uma detecção rápida e económica de inibidores de efluxo. Os resultados obtidos mostram, para todas as estirpes, que a GLU e o pH afectam a acumulação e o efluxo do brometo de etídeo. De todos os inibidores de vias biossintéticas testados, o ortovanadato de sódio, foi o que demonstrou maior actividade inibitória, a qual é revertida na presença de GLU. Em conclusão, este estudo mostra que a actividade de efluxo de E. coli depende não só da fosforilação oxidativa por via da força proto-motriz mas também da energia proveniente da hidrólise de ATP pelas ATPases. O ortovanadato de sódio tem potencial para ser um novo inibidor de bombas de efluxo de largo espectro. A tecnologia utilizada neste trabalho demonstrou ser apropriada para a caracterização bioenergética da actividade de bombas de efluxo e permite a selecção de novos inibidores de bombas de efluxo em bactérias.