998 resultados para ATORVASTATIN TREATMENT


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the effects of atorvastatin on ABCB1 and ABCC1 mRNA expression on peripheral blood mononuclear cells (PBMC) and their relationship with gene polymorphisms and lowering-cholesterol response. one hundred and thirty-six individuals with hypercholesterolemia were selected and treated with atorvastatin (10 mg/day/4 weeks). Blood samples were collected for serum lipids and apolipoproteins measurements and DNA and RNA extraction. ABCB1 (C3435T and G2677T/A) and ABCC1 (G2012T) gene polymorphisms were identified by polymerase chain reaction-restriction (PCR)-RFLP and mRNA expression was measured in peripheral blood mononuclear cells by singleplex real-time PCR. ABCB1 polymorphisms were associated with risk for coronary artery disease (CAD) (p < 0.05). After atorvastatin treatment, both ABCB1 and ABCC1 genes showed 50% reduction of the mRNA expression (p < 0.05). Reduction of ABCB1 expression was associated with ABCB1 G2677T/A polymorphism (p = 0.039). Basal ABCB1 mRNA in the lower quartile (<0.024) was associated with lower reduction rate of serum low-density lipoprotein (LDL) cholesterol (33.4 +/- 12.4%) and apolipoprotein B (apoB) (17.0 +/- 31.3%) when compared with the higher quartile (>0.085: LDL-c = 40.3 +/- 14.3%; apoB = 32.5 +/- 10.7%; p < 0.05). ABCB1 substrates or inhibitors did not affect the baseline expression, while ABCB1 inhibitors reversed the effects of atorvastatin on both ABCB1 and ABCC1 transporters. In conclusion, ABCB1 and ABCC1 mRNA levels in PBMC are modulated by atorvastatin and ABCB1 G2677T/A polymorphism. and ABCB1 baseline expression is related to differences in serum LDL cholesterol and apoB in response to atorvastatin. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The mechanisms underlying atorvastatin supression of ABCB1 gene expression, at transcriptional and post-transcriptional levels of ABCB1 gene in HepG2 (human hepatocellular carcinoma) cells were investigated. Quantitative real-time PCR was used to measure mRNA levels, as well as to estimate the half-life of ABCB1 mRNA. Western blotting analysis was performed in order to measure protein levels of ABCB1. Electrophoretic mobility shift assay (EMSA) was used to evaluate interactions between protein(s) and ABCB1 promoter region. Exposure to atorvastatin for 24 h resulted in a dose-dependent decrease of ABCB1 mRNA and protein levels, which was not abolished by addition of farnesyl or geranylgeranyl pyrophosphate. After removing fetal bovine serum from the media, however, ABCB1 expression was decreased by 2-fold in either HepG2 cells treated and non-treated with atorvastatin. Addition of cholesterol to serum free media abolished this latter effect on ABCB1 mRNA levels. In EMSA using a 5`-end-labeled 241 bp ABCB1 promoter DNA fragment (-198 to +43) as probe, the binding of the proteins to the probe was reduced by NF-Y, but not changed by NF kappa B, AP-1, and SP1. However, the NF-Y binding activity was similar in control and atorvastatin-treated cells. mRNA stability studies revealed that ABCB1 mRNA degradation was increased in 1, 10 and 20 mu M atorvastatin-treated versus control cells (half-lives of 2 h versus 7 h). Therefore, evidence is provided that decreased mRNA stability by atorvastatin treatment may explain the decrease in ABCB1 transcript levels. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Dyslipidemia is the primary risk factor for cardiovascular disease, and statins have been effective in controlling lipid levels. Sex differences in the pharmacokinetics and pharmacodynamics of statins contribute to interindividual variations in drug efficacy and toxicity. Objective: To evaluate the presence of sexual dimorphism in the efficacy and safety of simvastatin/atorvastatin treatment. Methods: Lipid levels of 495 patients (331 women and 164 men) were measured at baseline and after 6 ± 3 months of simvastatin/atorvastatin treatment to assess the efficacy and safety profiles of both drugs. Results: Women had higher baseline levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) compared with men (p < 0.0001). After treatment, women exhibited a greater decrease in plasma TC and LDL-C levels compared with men. After adjustment for covariates, baseline levels of TC and LDL-C influenced more than 30% of the efficacy of lipid-lowering therapy (p < 0.001), regardless of sex. Myalgia [with or without changes in creatine phosphokinase (CPK) levels] occurred more frequently in women (25.9%; p = 0.002), whereas an increase in CPK and/or abnormal liver function was more frequent in in men (17.9%; p = 0.017). Conclusions: Our results show that baseline TC and LDL-C levels are the main predictors of simvastatin/atorvastatin therapy efficacy, regardless of sex. In addition, they suggest the presence of sexual dimorphism in the safety of simvastatin/atorvastatin. The effect of sex differences on receptors, transporter proteins, and gene expression pathways needs to be better evaluated and characterized to confirm these observations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVE Increasing evidence indicates that the Fas/Fas ligand interaction is involved in atherogenesis. We sought to analyze soluble Fas (sFas) and soluble Fas ligand (sFasL) concentrations in subjects at high cardiovascular risk and their modulation by atorvastatin treatment. METHODS AND RESULTS ACTFAST was a 12-week, prospective, multicenter, open-label trial which enrolled subjects (statin-free or statin-treated at baseline) with coronary heart disease (CHD), CHD-equivalent, or 10-year CHD risk > 20%. Subjects with LDL-C between 100 to 220 mg/dL (2.6 to 5.7 mmol/L) and triglycerides < or = 600 mg/dL (6.8 mmol/L) were assigned to a starting dose of atorvastatin (10 to 80 mg/d) based on LDL-C at screening. Of the 2117 subjects enrolled in ACTFAST, AIM sub-study included the 1078 statin-free patients. At study end, 85% of these subjects reached LDL-C target. Mean sFas levels were increased and sFasL were reduced in subjects at high cardiovascular risk compared with healthy subjects. Atorvastatin reduced sFas in the whole population as well as in patients with metabolic syndrome or diabetes. Minimal changes were observed in sFasL. CONCLUSIONS sFas concentrations are increased and sFasL are decreased in subjects at high cardiovascular risk, suggesting that these proteins may be novel markers of vascular injury. Atorvastatin reduces sFas, indicating that short-term treatment with atorvastatin exhibits antiinflammatory effects in these subjects.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Considering that inflammation contributes to obesity-induced insulin resistance and that statins have been reported to have other effects beyond cholesterol lowering, the present study aimed to it whether atorvastatin treatment has anti-inflammatory action in white adipose tissue of obese mice, consequently improving insulin sensitivity. Insulin sensitivity in vivo (by insulin tolerance test); metabolic-hormonal profile; plasma tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, and adiponectin; adipose tissue immunohistochemistry; glucose transporter (GLUT) 4; adiponectin; INF-alpha; IL-1 beta; and IL-6 gene expression; and I kappa B kinase (IKK)-alpha/beta activity were assessed in 23-week-old monosodium glutamate induced obese mice untreated or treated with atorvastatin for 4 weeks. Insulin-resistant obese mice had increased plasma triglyceride, insulin, TNF-alpha, and IL-6 plasma levels. Adipose tissue of obese animals showed increased macrophage infiltration, IKK-alpha (42%, P < .05) and IKK-beta (73%, P < .05) phosphorylation, and INF-alpha and IL-6 messenger RNA (mRNA) (similar to 15%, P < .05) levels, and decreased GLUT4 mRNA and protein (30%, P < .05) levels. Atorvastatin treatment lowered cholesterol, triglyceride, insulin, INF-alpha, and IL-6 plasma levels, and restored whole-body insulin sensitivity. In adipose tissue, atorvastatin decreased macrophage in and normalized IKK-alpha/beta phosphorylation; INF-alpha, IL-6, and GLUT4 mRNA; and GLUT4 protein to control levels. The present findings demonstrate that atorvastatin has anti-inflammatory effects on adipose tissue of obese mice, which may be important to its local and whole-body insulin-sensitization effects. (C) 2010 Published by Elsevier Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Menopause is associated with changes in lipid levels resulting in increased risk of atherosclerosis and cardiovascular events. Hormone therapy (HT) and atorvastatin have been used to improve lipid profile in postmenopausal women. Effects of HT, atorvastatin and APOE polymorphisms on serum lipids and APOE and LXRA expression were evaluated in 87 hypercholesterolemic postmenopausal women, randomly selected for treatment with atorvastatin (AT, n=17), estrogen or estrogen plus progestagen (HT, n=34) and estrogen or estrogen plus progestagen associated with atorvastatin (HT+AT, n=36). RNA was extracted from peripheral blood mononuclear cells (PBMC) and mRNA expression was measured by TaqMan (R) PCR. APOE epsilon 2/epsilon 3/epsilon 4 genotyping was performed using PCR-RFLP. Total cholesterol (TC). LDL-c and apoB were reduced after each treatment (p<0.001). Triglycerides, VLDL-c and apoAl were reduced only after atorvastatin (p<0.05), whereas triglycerides and VLDL-c were increased after HT (p=0.01). HT women had lower reduction on TC, LDL-c and apoB than AT and HT+AT groups (p<0.05). APOE mRNA expression was reduced after atorvastatin treatment (p=0.03). Although LXRA gene expression was not modified by atorvastatin, it was correlated with APOE mRNA before and after treatments. Basal APOE mRNA expression was not influenced by gene polymorphisms, however the reduction on APOE expression was more pronounced in epsilon 3 epsilon 3 than in epsilon 3 epsilon 4 carriers. Atorvastatin down-regulates APOE mRNA expression and it is modified by APOE genotypes in PBMC from postmenopausal women. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Abstract Background Apolipoprotein E (apoE) is a key component of the lipid metabolism. Polymorphisms at the apoE gene (APOE) have been associated with cardiovascular disease, lipid levels and lipid-lowering response to statins. We evaluated the effects on APOE expression of hypercholesterolemia, APOE ε2/ε3/ε4 genotypes and atorvastatin treatment in Brazilian individuals. The relationship of APOE genotypes and plasma lipids and atorvastatin response was also tested in this population. Methods APOE ε2/ε3/ε4 and plasma lipids were evaluated in 181 normolipidemic (NL) and 181 hypercholesterolemic (HC) subjects. HC individuals with indication for lowering-cholesterol treatment (n = 141) were treated with atorvastatin (10 mg/day/4-weeks). APOE genotypes and APOE mRNA in peripheral blood mononuclear cells (PBMC) were analyzed by TaqMan real time PCR. Results HC had lower APOE expression than NL group (p < 0.05) and individuals with low APOE expression showed higher plasma total and LDL cholesterol and apoB, as well as higher apoAI (p < 0.05). Individuals carrying ε2 allele have reduced risk for hypercholesterolemia (OR: 0.27, 95% I.C.: 0.08-0.85, p < 0.05) and NL ε2 carriers had lower total and LDL cholesterol and apoB levels, and higher HDL cholesterol than non-carriers (p < 0.05). APOE genotypes did not affect APOE expression and atorvastatin response. Atorvastatin treatment do not modify APOE expression, however those individuals without LDL cholesterol goal achievement after atorvastatin treatment according to the IV Brazilian Guidelines for Dyslipidemia and Atherosclerosis Prevention had lower APOE expression than patients with desirable response after the treatment (p < 0.05). Conclusions APOE expression in PBMC is modulated by hypercholesterolemia and the APOE mRNA level regulates the plasma lipid profile. Moreover the expression profile is not modulated neither by atorvastatin nor APOE genotypes. In our population, APOE ε2 allele confers protection against hypercholesterolemia and a less atherogenic lipid profile. Moreover, low APOE expression after treatment of patients with poor response suggests a possible role of APOE level in atorvastatin response.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Statins exert anti-inflammatory, anti-atherogenic actions. The mechanisms responsible for these effects remain only partially elucidated. Diabetes and obesity are characterized by low-grade inflammation. Metabolic and endocrine adipocyte dysfunction is known to play a crucial role in the development of these disorders and the related cardiovascular complications. Thus, direct modulation of adipocyte function may represent a mechanism of pleiotropic statin actions. We investigated effects of atorvastatin on apoptosis, differentiation, endocrine, and metabolic functions in murine white and brown adipocyte lines. Direct exposure of differentiating preadipocytes to atorvastatin strongly reduced lipid accumulation and diminished protein expression of the differentiation marker CCAAT/enhancer binding protein-beta (CEBP-beta). In fully differentiated adipocytes, however, lipid accumulation remained unchanged after chronic atorvastatin treatment. Furthermore, cell viability was reduced in response to atorvastatin treatment in proliferating and differentiating preadipocytes, but not in differentiated cells. Moreover, atorvastatin induced apoptosis and inhibited protein kinase B (AKT) phosphorylation in proliferating and differentiating preadipocytes, but not in differentiated adipocytes. On the endocrine level, direct atorvastatin treatment of differentiated white adipocytes enhanced expression of the pro-inflammatory adipokine interleukin-6 (IL-6), and downregulated expression of the insulin-mimetic and anti-inflammatory adipokines visfatin and adiponectin. Finally, these direct adipotropic endocrine effects of atorvastatin were paralleled by the acute inhibition of insulin-induced glucose uptake in differentiated white adipocytes, while protein expression of the thermogenic uncoupling protein-1 (UCP-1) in brown adipocytes remained unchanged. Taken together, our data for the first time demonstrate direct differentiation state-dependent effects of atorvastatin including apoptosis, modulation of pro-inflammatory and glucostatic adipokine expression, and insulin resistance in adipose cells. These differential interactions may explain variable clinical observations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report focuses on the effects of cholesterol on the expression and function of the ATP-binding cassette (ABCB1, ABCG2 and ABCC2) and solute-linked carrier (SLCO1B1 and SLCO2B1) drug transporters with a particular focus on the potential impact of cholesterol on lipid-lowering drug disposition. Statins are the most active agents in the treatment of hypercholesterolemia. However, considerable interindividual variation exists in the response to statin therapy. Therefore, it would be huge progress if factors were identified that reliably differentiate between responders and nonresponders. Many studies have suggested that plasma lipid concentrations can affect drug disposition of compounds, such as ciclosporin and amphotericin B. Both compounds are able to affect the expression and function of ABC transporters. Although still speculative, these effects might be owing to the regulation of drug transporters by plasma cholesterol levels. Studies with normo- and hyper-cholesterolemic individuals, before and after atorvastatin treatment, have demonstrated that plasma cholesterol levels are correlated with drug transporter expression, as well as being related to atorvastatin`s cholesterol-lowering effect. The mechanism influencing the correlation between cholesterol levels and the expression and function of drug transporters remains unclear. Some studies provide strong evidence that nuclear receptors, such as the pregnane X receptor and the constitutive androstane receptor, mediate this effect. In the near future, pharmacogenomic studies with individuals in a pathological state should be performed in order to identify whether high plasma cholesterol levels might be a factor contributing to interindividual oral drug bioavailability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Nitric oxide (NO) has been largely associated with cardiovascular protection through improvement of endothelial function. Recently, new evidence about modulation of NO release by microRNAs (miRs) has been reported, which could be involved with statin-dependent pleiotropic effects, including anti-inflammatory properties related to vascular endothelium function. Objective: To evaluate the effects of cholesterol-lowering drugs including the inhibitors of cholesterol synthesis, atorvastatin and simvastatin, and the inhibitor of cholesterol absorption ezetimibe on NO release, NOS3 mRNA expression and miRs potentially involved in NO bioavailability. Methods: Human umbilical vein endothelial cells (HUVEC) were exposed to atorvastatin, simvastatin or ezetimibe (0 to 5.0 μM). Cells were submitted to total RNA extraction and relative quantification of NOS3 mRNA and miRs -221, -222 and -1303 by qPCR. NO release was measured in supernatants by ozone-chemiluminescence. Results: Both statins increased NO levels and NOS3 mRNA expression but no influence was observed for ezetimibe treatment. Atorvastatin, simvastatin and ezetimibe down-regulated the expression of miR-221, whereas miR-222 was reduced only after the atorvastatin treatment. The magnitude of the reduction of miR-221 and miR-222 after treatment with statins correlated with the increment in NOS3 mRNA levels. No influence was observed on the miR-1303 expression after treatments. Conclusion: NO release in endothelial cells is increased by statins but not by the inhibitor of cholesterol absorption, ezetimibe. Our results provide new evidence about the participation of regulatory miRs 221/222 on NO release induction mediated by statins. Although ezetimibe did not modulate NO levels, the down-regulation of miR-221 could involve potential effects on endothelial function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High levels of low-density lipoprotein cholesterol (LDL-C) enhance platelet activation, whereas high levels of high-density lipoprotein cholesterol (HDL-C) exert a cardioprotective effect. However, the effects on platelet activation of high levels of LDL-C combined with low levels of HDL-C (HLC) have not yet been reported. We aimed to evaluate the platelet activation marker of HLC patients and investigate the antiplatelet effect of atorvastatin on this population. Forty-eight patients with high levels of LDL-C were enrolled. Among these, 23 had HLC and the other 25 had high levels of LDL-C combined with normal levels of HDL-C (HNC). A total of 35 normocholesterolemic (NOMC) volunteers were included as controls. Whole blood flow cytometry and platelet aggregation measurements were performed on all participants to detect the following platelet activation markers: CD62p (P-selectin), PAC-1 (GPIIb/IIIa), and maximal platelet aggregation (MPAG). A daily dose of 20 mg atorvastatin was administered to patients with high levels of LDL-C, and the above assessments were obtained at baseline and after 1 and 2 months of treatment. The expression of platelets CD62p and PAC-1 was increased in HNC patients compared to NOMC volunteers (P<0.01 and P<0.05). Furthermore, the surface expression of platelets CD62p and PAC-1 was greater among HLC patients than among HNC patients (P<0.01 and P<0.05). Although the expression of CD62p and PAC-1 decreased significantly after atorvastatin treatment, it remained higher in the HLC group than in the HNC group (P<0.05 and P=0.116). The reduction of HDL-C further increased platelet activation in patients with high levels of LDL-C. Platelet activation remained higher among HLC patients regardless of atorvastatin treatment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In addition to their expected effects on lipid profile, lipid-lowering agents may reduce cardiovascular events because of effects on nonclassic risk factors such as insulin resistance and inflammation. Ezetimibe specifically blocks the absorption of dietary and biliary cholesterol as well as plant sterols. Although it is known that an additional reduction of low-density lipoprotein cholesterol (LDL-C) levels can be induced by the combination of ezetimibe with statins, it is not known if this can enhance some pleiotropic effects, which may be useful in slowing the atherosclerotic process. This study assessed the effects of simvastatin and ezetimibe, in monotherapy or in combination, on markers of endothelial function and insulin sensitivity. Fifty prediabetic subjects with normo- or mild-to-moderate hypercholesterolemia were randomly allocated to 2 groups receiving either ezetimibe (10 mg/d) or simvastatin (20 mg/d) for 12 weeks, after which the drugs were combined for both groups for an additional 12-week period. Clinical and laboratory parameters were measured at baseline and after 12 and 24 weeks of therapy. Homeostasis model assessment of insulin resistance index and the area under the curve of insulin were calculated. As expected, both groups receiving drugs in isolation significantly reduced total cholesterol, LDL-C, apolipoprotein B, and triglyceride levels; and additional reductions were found after the combination period (P <.05). After 12 weeks of monotherapy, plasminogen activator inhibitor-1 levels and urinary albumin excretion were lower in the simvastatin than in the ezetimibe group. No change in homeostasis model assessment of insulin resistance index, area under the curve of insulin, and adiponectin levels was observed tiller either the monotherapies or the combined therapy. However, simvastatin combined with ezetimibe provoked significant reductions in E-selectin and intravascular cellular adhesion molecule-1 levels that were independent of LDL-C changes. Our findings support claims that simvastatin may be beneficial in preserving endothelial function in prediabetic subjects with normo- or mild-to-moderate hypercholesterolemia. Alternatively, a deleterious effect of ezetimibe on the endothelial function is suggested, considering the increase in intravascular cellular adhesion molecule I and E-selectin levels. Simvastatin and ezetimibe, in isolation or in combination, do not interfere with insulin sensitivity. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: ABCA1 plays an important role in HDL metabolism. Single nucleotide polymorphisms (SNPs) in ABCA1 gene were associated with variation in plasina HDL-c. Methods: The effect of the ABCA1 SNPs C-14T, R219K and of a novel variant C-105T on serum lipids was investigated in 367 unrelated Brazilian individuals (224 hypercholesterolemic and 143 normolipidemic). The relation between ABCA1 SNPs and the lipid-lowering response to atorvastatin (10 mg/day/4 weeks) was also evaluated in 141 hypercholesterolemic (HC) individuals. The polymorphisms were detected by PCRR_FLP and confirmed by DNA sequencing. Results: Linkage disequilibrium was found between the SNPs C-105T and C-14T in the HC group. HC individuals carrying - 105CT/TT genotypes had higher serum HDL-c and lower triglyceride and VLDL-c concentrations as well as lower TG/HDL-c ratio compared to the -105CC carriers (p<0.05). The R219K SNP was associated with reduced serum triglyceride, VLDL-c and TG/HDL-c ratio in the HC group (p<0.05), and with an increased serum apoAI in NL individuals. The effects of ABCA1 SNPs on basal serum lipids of HC individuals were not modified by atorvastatin treatment. Conclusions: The ABCA1 SNPs R219K and C-105T were associated with a less atherogenic lipid profile but not with the lowering-cholesterol response to atorvastatin in a Brazilian population. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: The role of statin therapy in heart failure (HF) is unclear. The amino-terminal propeptide of procollagen type III (PIIINP) predicts outcome in HF, and yet there are conflicting reports of statin therapy effects on PIIINP.

OBJECTIVES: This study determined whether there was an increase in serum markers of inflammation, fibrosis (including PIIINP), and B-type natriuretic peptide (BNP) in patients with systolic HF and normal total cholesterol and determined the effects of long-term treatment with atorvastatin on these markers.

METHODS: Fifty-six white patients with systolic HF and normal cholesterol levels (age 72 [13] years; 68% male; body mass index 27.0 [7.3] kg/m(2); ejection fraction 35 [13]%; 46% with history of smoking) were randomly allocated to atorvastatin treatment for 6 months, titrated to 40 mg/d (A group) or not (C group). Age- and/or sex-matched subjects without HF (N group) were also recruited. Biomarkers were measured at baseline (all groups) and 6 months (A and C groups).

RESULTS: Serum markers of collagen turnover, inflammation, and BNP were significantly elevated in HF patients compared with normal participants (all P < 0.05). There were correlations between these markers in HF patients but not in normal subjects. Atorvastatin treatment for 6 months caused a significant reduction in the following biomarkers compared with baseline: BNP, from median (interquartile range) 268 (190-441) pg/mL to 185 (144-344) pg/mL; high-sensitivity C-reactive protein (hs-CRP), from 5.26 (1.95 -9.29) mg/L to 3.70 (2.34-6.81) mg/L; and PIIINP, from 4.65 (1.86) to 4.09 (1.25) pg/mL (all P < 0.05 baseline vs 6 months). Between-group differences were significant for PIIINP only (P = 0.027). There was a positive interaction between atorvastatin effects and baseline hs-CRP and PIIINP (P < 0.01).

CONCLUSIONS: Long-term statin therapy reduced PIIINP in this small, selected HF population with elevated baseline levels. Further evaluation of statin therapy in the management of HF patients with elevated PIIINP is warranted.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Drug-drug interaction between statins metabolised by cytochrome P450 3A4 and clopidogrel have been claimed to attenuate the inhibitory effect of clopidogrel. However, published data regarding this drug-drug interaction are controversial. We aimed to determine the effect of fluvastatin and atorvastatin on the inhibitory effect of dual antiplatelet therapy with acetylsalicylic acid (ASA) and clopidogrel. One hundred one patients with symptomatic stable coronary artery disease undergoing percutaneous coronary intervention and drug-eluting stent implantation were enrolled in this prospective randomised study. After an interval of two weeks under dual antiplatelet therapy with ASA and clopidogrel, without any lipid-lowering drug, 87 patients were randomised to receive a treatment with either fluvastatin 80 mg daily or atorvastatin 40 mg daily in addition to the dual antiplatelet therapy for one month. Platelet aggregation was assessed using light transmission aggregometry and whole blood impedance platelet aggregometry prior to randomisation and after one month of receiving assigned statin and dual antiplatelet treatment. Platelet function assessment after one month of statin and dual antiplatelet therapy did not show a significant change in platelet aggregation from 1st to 2nd assessment for either statin group. There was also no difference between atorvastatin and fluvastatin treatment arms. In conclusion, neither atorvastatin 40 mg daily nor fluvastatin 80 mg daily administered in combination with standard dual antiplatelet therapy following coronary drug-eluting stent implantation significantly interfere with the antiaggregatory effect of ASA and clopidogrel.