926 resultados para ATMOSPHERIC DEPOSITION
Resumo:
Atmospheric pollution by motor vehicles is considered a relevant source of damage to architectural heritage. Thus the aim of this work was to assess the atmospheric depositions and patterns of polycyclic aromatic hydrocarbons (PAHs) in façades of historical monuments. Eighteen PAHs (16 PAHs considered by US EPA as priority pollutants, dibenzo[a,l]pyrene and benzo[j]fluoranthene) were determined in thin black layers collected from façades of two historical monuments: Hospital Santo António and Lapa Church (Oporto, Portugal). Scanning electron microscopy (SEM) was used for morphological and elemental characterisation of thin black layers; PAHs were quantified by microwave-assisted extraction combined with liquid chromatography (MAE-LC). The thickness of thin black layers were 80–110 μm and they contained significant levels of iron, sulfur, calcium and phosphorus. Total concentrations of 18 PAHs ranged from 7.74 to 147.92 ng/g (mean of 45.52 ng/g) in thin black layers of Hospital Santo António, giving a range three times lower than at Lapa Church (5.44– 429.26 ng/g; mean of 110.25 ng/g); four to six rings compounds accounted at both monuments approximately for 80–85% of ΣPAHs. The diagnostic ratios showed that traffic emissions were significant source of PAHs in thin black layers. Composition profiles of PAHs in thin black layers of both monuments were similar to those of ambient air, thus showing that air pollution has a significant impact on the conditions and stone decay of historical building façades. The obtained results confirm that historical monuments in urban areas act as passive repositories for air pollutants present in the surrounding atmosphere.
Resumo:
Artificial radionuclides ((137)Cs, (90)Sr, Pu, and (241)Am) are present in soils because of Nuclear Weapon Tests and accidents in nuclear facilities. Their distribution in soil depth varies according to soil characteristics, their own chemical properties, and their deposition history. For this project, we studied the atmospheric deposition of (137)Cs, (90)Sr, Pu, (241)Am, (210)Pb, and stable Pb. We compared the distribution of these elements in soil profiles from different soil types from an alpine Valley (Val Piora, Switzerland) with the distribution of selected major and trace elements in the same soils. Our goals were to explain the distribution of the radioisotopes as a function of soil parameters and to identify stable elements with analogous behaviors. We found that Pu and (241)Am are relatively immobile and accumulate in the topsoil. In all soils, (90)Sr is more mobile and shows some accumulations at depth into Fe-Al rich horizons. This behavior is also observed for Cu and Zn, indicating that these elements may be used as chemical analogues for the migration of (90)Sr into the soil.
Resumo:
Major episodic acidifications were observed on several occasions in first-order brooks at Acadia National Park, Mount Desert Island, Maine. Short-term declines of up to 2 pH units and 130-mu-eq L-1 acid-neutralizing capacity were caused by HCl from soil solutions, rather than by H2SO4 or HNO3 from precipitation, because (1) SO4 concentrations were constant or decreased during the pH depression, (2) Cl concentrations were greatest at the time of lowest pH, and (3) Na:Cl ratios decreased from values much greater than those in precipitation (a result of chemical weathering), to values equal to or less than those in precipitation. Dilution, increases in NO3 concentrations, or increased export or organic acidity from soils were insufficient to cause the observed decreases in pH. These data represent surface water acidifications due primarily to an ion exchange "salt effect" of Na+ for H+ in soil solution, and secondarily to dilution, neither of which is a consequence of acidic deposition. The requisite conditions for a major episodic salt effect acidification include acidic soils, and either an especially salt-laden wet precipitation event, or a period of accumulation of marine salts from dry deposition, followed by wet inputs.
Resumo:
Mode of access: Internet.
Resumo:
Measurement and modeling techniques were developed to improve over-water gaseous air-water exchange measurements for persistent bioaccumulative and toxic chemicals (PBTs). Analytical methods were applied to atmospheric measurements of hexachlorobenzene (HCB), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). Additionally, the sampling and analytical methods are well suited to study semivolatile organic compounds (SOCs) in air with applications related to secondary organic aerosol formation, urban, and indoor air quality. A novel gas-phase cleanup method is described for use with thermal desorption methods for analysis of atmospheric SOCs using multicapillary denuders. The cleanup selectively removed hydrogen-bonding chemicals from samples, including much of the background matrix of oxidized organic compounds in ambient air, and thereby improved precision and method detection limits for nonpolar analytes. A model is presented that predicts gas collection efficiency and particle collection artifact for SOCs in multicapillary denuders using polydimethylsiloxane (PDMS) sorbent. An approach is presented to estimate the equilibrium PDMS-gas partition coefficient (Kpdms) from an Abraham solvation parameter model for any SOC. A high flow rate (300 L min-1) multicapillary denuder was designed for measurement of trace atmospheric SOCs. Overall method precision and detection limits were determined using field duplicates and compared to the conventional high-volume sampler method. The high-flow denuder is an alternative to high-volume or passive samplers when separation of gas and particle-associated SOCs upstream of a filter and short sample collection time are advantageous. A Lagrangian internal boundary layer transport exchange (IBLTE) Model is described. The model predicts the near-surface variation in several quantities with fetch in coastal, offshore flow: 1) modification in potential temperature and gas mixing ratio, 2) surface fluxes of sensible heat, water vapor, and trace gases using the NOAA COARE Bulk Algorithm and Gas Transfer Model, 3) vertical gradients in potential temperature and mixing ratio. The model was applied to interpret micrometeorological measurements of air-water exchange flux of HCB and several PCB congeners in Lake Superior. The IBLTE Model can be applied to any scalar, including water vapor, carbon dioxide, dimethyl sulfide, and other scalar quantities of interest with respect to hydrology, climate, and ecosystem science.
Resumo:
Human activities have been interfering with the natural biogeochemical cycles of trace elements since the ancient civilizations. Although they are inaccessible and remote, high mountain lake catchments are irrefutably trace-element contaminated by anthropogenic emissions, which can travel by long-range atmospheric transport before they are deposited. This has been revealed by several natural archives. High mountain lake catchments are thus excellent sentinels of long-range contamination. Continuous accumulation can lead to a build up of potentially toxic trace elements in these remote, or relatively remote, ecosystems. The thesis focuses on the biogeochemistry of a suite of trace elements of environmental concern (Ni, Cu, Zn, As, Se, Cd and Pb) in Pyrenean lake catchments, with special emphasis on discerning the “natural” components from the “anthropogenic” contributions. Five other metallic elements (Al, Fe, Ti, Mn and Zr) have also been studied to trace natural fluxes and biogeochemical processes within the lake catchment systems.
Resumo:
Increased atmospheric deposition of inorganic nitrogen (N) may lead to increased leaching of nitrate (NO3-) to surface waters. The mechanisms responsible for, and controls on, this leaching are matters of debate. An experimental N addition has been conducted at Gardsjon, Sweden to determine the magnitude and identify the mechanisms of N leaching from forested catchments within the EU funded project NITREX. The ability of INCA-N, a simple process-based model of catchment N dynamics, to simulate catchment-scale inorganic N dynamics in soil and stream water during the course of the experimental addition is evaluated. Simulations were performed for 1990-2002. Experimental N addition began in 1991. INCA-N was able to successfully reproduce stream and soil water dynamics before and during the experiment. While INCA-N did not correctly simulate the lag between the start of N addition and NO 2 3 breakthrough, the model was able to simulate the state change resulting from increased N deposition. Sensitivity analysis showed that model behaviour was controlled primarily by parameters related to hydrology and vegetation dynamics and secondarily by in-soil processes.
Resumo:
Much uncertainty still exists regarding the relative importance of organic acids in relation to acid deposition in controlling the acidity of soil and surface waters. This paper contributes to this debate by presenting analysis of seasonal variations in atmospheric deposition, soil solution and stream water chemistry for two UK headwater catchments with contrasting soils. Acid neutralising capacity (ANC), dissolved organic carbon (DOC) concentrations and the Na:Cl ratio of soil and stream waters displayed strong seasonal patterns with little seasonal variation observed in soil water pH. These patterns, plus the strong relationships between ANC, Cl and DOC, suggest that cation exchange and seasonal changes in the production of DOC and seasalt deposition are driving a shift in the proportion of acidity attributable to strong acid anions, from atmospheric deposition, during winter to predominantly organic acids in summer.
Resumo:
We use a state-of-the-art ocean general circulation and biogeochemistry model to examine the impact of changes in ocean circulation and biogeochemistry in governing the change in ocean carbon-13 and atmospheric CO2 at the last glacial maximum (LGM). We examine 5 different realisations of the ocean's overturning circulation produced by a fully coupled atmosphere-ocean model under LGM forcing and suggested changes in the atmospheric deposition of iron and phytoplankton physiology at the LGM. Measured changes in carbon-13 and carbon-14, as well as a qualitative reconstruction of the change in ocean carbon export are used to evaluate the results. Overall, we find that while a reduction in ocean ventilation at the LGM is necessary to reproduce carbon-13 and carbon-14 observations, this circulation results in a low net sink for atmospheric CO2. In contrast, while biogeochemical processes contribute little to carbon isotopes, we propose that most of the change in atmospheric CO2 was due to such factors. However, the lesser role for circulation means that when all plausible factors are accounted for, most of the necessary CO2 change remains to be explained. This presents a serious challenge to our understanding of the mechanisms behind changes in the global carbon cycle during the geologic past.
Resumo:
[1] Iron is hypothesized to be an important micronutrient for ocean biota, thus modulating carbon dioxide uptake by the ocean biological pump. Studies have assumed that atmospheric deposition of iron to the open ocean is predominantly from mineral aerosols. For the first time we model the source, transport, and deposition of iron from combustion sources. Iron is produced in small quantities during fossil fuel burning, incinerator use, and biomass burning. The sources of combustion iron are concentrated in the industrialized regions and biomass burning regions, largely in the tropics. Model results suggest that combustion iron can represent up to 50% of the total iron deposited, but over open ocean regions it is usually less than 5% of the total iron, with the highest values (< 30%) close to the East Asian continent in the North Pacific. For ocean biogeochemistry the bioavailability of the iron is important, and this is often estimated by the fraction which is soluble ( Fe(II)). Previous studies have argued that atmospheric processing of the relatively insoluble Fe(III) occurs to make it more soluble ( Fe( II)). Modeled estimates of soluble iron amounts based solely on atmospheric processing as simulated here cannot match the variability in daily averaged in situ concentration measurements in Korea, which is located close to both combustion and dust sources. The best match to the observations is that there are substantial direct emissions of soluble iron from combustion processes. If we assume observed soluble Fe/black carbon ratios in Korea are representative of the whole globe, we obtain the result that deposition of soluble iron from combustion contributes 20-100% of the soluble iron deposition over many ocean regions. This implies that more work should be done refining the emissions and deposition of combustion sources of soluble iron globally.
Resumo:
Peat deposits in Greenland and Denmark were investigated to show that high-resolution dating of these archives of atmospheric deposition can be provided for the last 50 years by radiocarbon dating using the atmospheric bomb pulse. (super 14) C was determined in macrofossils from sequential one cm slices using accelerator mass spectrometry (AMS). Values were calibrated with a general-purpose curve derived from annually averaged atmospheric (super 14) CO (sub 2) values in the northernmost northern hemisphere (NNH, 30 degrees -90 degrees N). We present a through review of (super 14) C bomb-pulse data from the NNH including our own measurements made in tree rings and seeds from Arizona as well as other previously published data. We show that our general-purpose calibration curve is valid for the whole NNH producing accurate dates within 1-2 years. In consequence, (super 14) C AMS can precisely date individual points in recent peat deposits within the range of the bomb-pulse (from the mid-1950s on). Comparing the (super 14) C AMS results with the customary dating method for recent peat profiles by (super 210) Pb, we show that the use of (super 137) Cs to validate and correct (super 210) Pb dates proves to be more problematic than previously supposed. As a unique example of our technique, we show how this chronometer can be applied to identify temporal changes in Hg concentrations from Danish and Greenland peat cores.
Resumo:
Illinois State Water Survey/National Atmospheric Deposition Program