922 resultados para ATLANTIC FOREST LANDSCAPE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effects of roads on wildlife and its habitat have been measured using metrics, such as the nearest road distance, road density, and effective mesh size. In this work we introduce two new indices: (1) Integral Road Effect (IRE), which measured the sum effects of points in a road at a fixed point in the forest; and (2) Average Value of the Infinitesimal Road Effect (AVIRE), which measured the average of the effects of roads at this point. IRE is formally defined as the line integral of a special function (the infinitesimal road effect) along the curves that model the roads, whereas AVIRE is the quotient of IRE by the length of the roads. Combining tools of ArcGIS software with a numerical algorithm, we calculated these and other road and habitat cover indices in a sample of points in a human-modified landscape in the Brazilian Atlantic Forest, where data on the abundance of two groups of small mammals (forest specialists and habitat generalists) were collected in the field. We then compared through the Akaike Information Criterion (AIC) a set of candidate regression models to explain the variation in small mammal abundance, including models with our two new road indices (AVIRE and IRE) or models with other road effect indices (nearest road distance, mesh size, and road density), and reference models (containing only habitat indices, or only the intercept without the effect of any variable). Compared to other road effect indices, AVIRE showed the best performance to explain abundance of forest specialist species, whereas the nearest road distance obtained the best performance to generalist species. AVIRE and habitat together were included in the best model for both small mammal groups, that is, higher abundance of specialist and generalist small mammals occurred where there is lower average road effect (less AVIRE) and more habitat. Moreover, AVIRE was not significantly correlated with habitat cover of specialists and generalists differing from the other road effect indices, except mesh size, which allows for separating the effect of roads from the effect of habitat on small mammal communities. We suggest that the proposed indices and GIS procedures could also be useful to describe other spatial ecological phenomena, such as edge effect in habitat fragments. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Information to guide decision making is especially urgent in human dominated landscapes in the tropics, where urban and agricultural frontiers are still expanding in an unplanned manner. Nevertheless, most studies that have investigated the influence of landscape structure on species distribution have not considered the heterogeneity of altered habitats of the matrix, which is usually high in human dominated landscapes. Using the distribution of small mammals in forest remnants and in the four main altered habitats in an Atlantic forest landscape, we investigated 1) how explanatory power of models describing species distribution in forest remnants varies between landscape structure variables that do or do not incorporate matrix quality and 2) the importance of spatial scale for analyzing the influence of landscape structure. We used standardized sampling in remnants and altered habitats to generate two indices of habitat quality, corresponding to the abundance and to the occurrence of small mammals. For each remnant, we calculated habitat quantity and connectivity in different spatial scales, considering or not the quality of surrounding habitats. The incorporation of matrix quality increased model explanatory power across all spatial scales for half the species that occurred in the matrix, but only when taking into account the distance between habitat patches (connectivity). These connectivity models were also less affected by spatial scale than habitat quantity models. The few consistent responses to the variation in spatial scales indicate that despite their small size, small mammals perceive landscape features at large spatial scales. Matrix quality index corresponding to species occurrence presented a better or similar performance compared to that of species abundance. Results indicate the importance of the matrix for the dynamics of fragmented landscapes and suggest that relatively simple indices can improve our understanding of species distribution, and could be applied in modeling, monitoring and managing complex tropical landscapes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent developments have highlighted the importance of forest amount at large spatial scales and of matrix quality for ecological processes in remnants. These developments, in turn, suggest the potential for reducing biodiversity loss through the maintenance of a high percentage of forest combined with sensitive management of anthropogenic areas. We conducted a multi-taxa survey to evaluate the potential for biodiversity maintenance in an Atlantic forest landscape that presented a favorable context from a theoretical perspective (high proportion of mature forest partly surrounded by structurally complex matrices). We sampled ferns, butterflies, frogs, lizards, bats, small mammals and birds in interiors and edges of large and small mature forest remnants and two matrices (second-growth forests and shade cacao plantations), as well as trees in interiors of small and large remnants. By considering richness, abundance and composition of forest specialists and generalists, we investigated the biodiversity value of matrix habitats (comparing them with interiors of large remnants for all groups except tree), and evaluated area (for all groups) and edge effects (for all groups except trees) in mature forest remnants. our results suggest that in landscapes comprising high amounts of mature forest and low contrasting matrices: (1) shade cacao plantations and second-growth forests harbor an appreciable number of forest specialists; (2) most forest specialist assemblages are not affected by area or edge effects, while most generalist assemblages proliferate at edges of small remnants. Nevertheless, differences in tree assemblages, especially among smaller trees, Suggest that observed patterns are unlikely to be stable over time. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The degree to which habitat fragmentation affects bird incidence is species specific and may depend on varying spatial scales. Selecting the correct scale of measurement is essential to appropriately assess the effects of habitat fragmentation on bird occurrence. Our objective was to determine which spatial scale of landscape measurement best describes the incidence of three bird species (Pyriglena leucoptera, Xiphorhynchus fuscus and Chiroxiphia caudata) in the fragmented Brazilian Atlantic forest and test if multi-scalar models perform better than single-scalar ones. Bird incidence was assessed in 80 forest fragments. The surrounding landscape structure was described with four indices measured at four spatial scales (400-, 600-, 800- and 1,000-m buffers around the sample points). The explanatory power of each scale in predicting bird incidence was assessed using logistic regression, bootstrapped with 1,000 repetitions. The best results varied between species (1,000-m radius for P. leucoptera; 800-m for X. fuscus and 600-m for C. caudata), probably due to their distinct feeding habits and foraging strategies. Multi-scale models always resulted in better predictions than single-scale models, suggesting that different aspects of the landscape structure are related to different ecological processes influencing bird incidence. In particular, our results suggest that local extinction and (re)colonisation processes might simultaneously act at different scales. Thus, single-scale models may not be good enough to properly describe complex pattern-process relationships. Selecting variables at multiple ecologically relevant scales is a reasonable procedure to optimise the accuracy of species incidence models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-lagged responses of biological variables to landscape modifications are widely recognized, but rarely considered in ecological studies. In order to test for the existence of time-lags in the response of trees, small mammals, birds and frogs to changes in fragment area and connectivity, we studied a fragmented and highly dynamic landscape in the Atlantic forest region. We also investigated the biological correlates associated with differential responses among taxonomic groups. Species richness and abundance for four taxonomic groups were measured in 21 secondary forest fragments during the same period (2000-2002), following a standardized protocol. Data analyses were based on power regressions and model selection procedures. The model inputs included present (2000) and past (1962, 1981) fragment areas and connectivity, as well as observed changes in these parameters. Although past landscape structure was particularly relevant for trees, all taxonomic groups (except small mammals) were affected by landscape dynamics, exhibiting a time-lagged response. Furthermore, fragment area was more important for species groups with lower dispersal capacity, while species with higher dispersal ability had stronger responses to connectivity measures. Although these secondary forest fragments still maintain a large fraction of their original biodiversity, the delay in biological response combined with high rates of deforestation and fast forest regeneration imply in a reduction in the average age of the forest. This also indicates that future species losses are likely, especially those that are more strictly-forest dwellers. Conservation actions should be implemented to reduce species extinction, to maintain old-growth forests and to favour the regeneration process. Our results demonstrate that landscape history can strongly affect the present distribution pattern of species in fragmented landscapes, and should be considered in conservation planning. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Atlantic Forest domain, one of the 25 world's hotspots for biodiversity, has experienced dramatic changes in its landscape. While the loss of species diversity is well documented, functional diversity has not received the same amount of attention. In this study, we evaluated functional diversity of insects in streams utilizing three indices: functional diversity (FD), functional dispersion (FDis), and functional divergence (FDiv), seeking to understand the roles of three predictor sets in explaining functional patterns: (1) bioclimatic and landscape variables; (2) spatial variables; and (3) local environmental variables. We determined the amount of variation in different measures of functional diversity that was explained by each predictor set and their interplays using variation partitioning. Our study showed that variation in functional diversity is better explained by a set of variables linked to different scales dependent on spatial structures, indicating the importance of landscape and mainly environmental variables in the functional organization of aquatic insect communities, and that the relative importance of predictor sets depends on the indices considered. Variation in FD was better explained by the interplay among the three predictor sets and by local environmental variables, whereas variation in FDis was better explained by spatial variables and by the interplay between environmental and spatial variables. Variation in FDiv was not significantly explained by any predictors. Our study adds more evidence on the harmful effects caused by landscape changes on biodiversity in the Atlantic Forest, suggesting that these effects also influence the functional organization of stream insect communities. © 2013 The Author(s) Journal compilation © 2013 by The Association for Tropical Biology and Conservation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is now an extensive literature on extinction debt following deforestation. However, the potential for species credit in landscapes that have experienced a change from decreasing to expanding forest cover has received little attention. Both delayed responses should depend on current landscape forest cover and on species life-history traits, such as longevity, as short-lived species are likely to respond faster than long-lived species. We evaluated the effects of historical and present-day local forest cover on two vertebrate groups with different longevities understorey birds and non-flying small mammals - in forest patches at three Atlantic Forest landscapes. Our work investigated how the probability of extinction debt and species credit varies (i) amongst landscapes with different proportions of forest cover and distinct trajectories of forest cover change, and (ii) between taxa with different life spans. Our results suggest that the existence of extinction debt and species credit, as well as the potential for their future payment and/or receipt, is not only related to forest cover trajectory but also to the amount of remaining forest cover at the landscape scale. Moreover, differences in bird and small mammal life spans seem to be insufficient to affect differently their probability of showing time-delayed responses to landscape change. Synthesis and applications. Our work highlights the need for considering not only the trajectory of deforestation/regeneration but also the amount of forest cover at landscape scale when investigating time-delayed responses to landscape change. As many landscapes are experiencing a change from decreasing to expanding forest cover, understanding the association of extinction and immigration processes, as well as their interactions with the landscape dynamic, is a key factor to plan conservation and restoration actions in human-altered landscapes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Atlantic Forest deserves special attention due to its high level of species endemism and degree of threat. As in other tropical biomes, there is little information about the ecology of the organisms that occur there. The objectives of this study were to verify how fruit-feeding butterflies are distributed through time, and the relation with meteorological conditions. Species richness and Shannon index were partitioned additively at the monthly level, and beta diversity, used as a hierarchical measure of temporal species turnover, was calculated among months, trimesters, and semesters. Circular analysis was used to verify how butterflies are distributed along seasons and its relation with meteorological conditions. We sampled 6488 individuals of 73 species. Temporal diversity of butterflies was more grouped than expected by chance among the months of each trimester. Circular analyses revealed that diversity is concentrated in hot months (September-March), with the subfamily Brassolinae strongly concentrated in February-March. Average temperature was correlated with total abundance of butterflies, abundance of Biblidinae, Brassolinae and Morphinae, and richness of Satyrinae. The present results show that 3mo of sampling between September and March is enough to produce a nonbiased sample of the local assemblage of butterflies, containing at least 70 percent of the richness and 25 percent of abundance. The influence of temperature on sampling is probably related to butterfly physiology. Moreover, temperature affects resource availability for larvae and adults, which is higher in hot months. The difference in seasonality patterns among subfamilies is probably a consequence of different evolutionary pressures through time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The matrix-tolerance hypothesis suggests that the most abundant species in the inter-habitat matrix would be less vulnerable to their habitat fragmentation. This model was tested with leaf-litter frogs in the Atlantic Forest where the fragmentation process is older and more severe than in the Amazon, where the model was first developed. Frog abundance data from the agricultural matrix, forest fragments and continuous forest localities were used. We found an expected negative correlation between the abundance of frogs in the matrix and their vulnerability to fragmentation, however, results varied with fragment size and species traits. Smaller fragments exhibited stronger matrix-vulnerability correlation than intermediate fragments, while no significant relation was observed for large fragments. Moreover, some species that avoid the matrix were not sensitive to a decrease in the patch size, and the opposite was also true, indicating significant differences with that expected from the model. Most of the species that use the matrix were forest species with aquatic larvae development, but those species do not necessarily respond to fragmentation or fragment size, and thus affect more intensively the strengthen of the expected relationship. Therefore, the main relationship expected by the matrix-tolerance hypothesis was observed in the Atlantic Forest; however we noted that the prediction of this hypothesis can be substantially affected by the size of the fragments, and by species traits. We propose that matrix-tolerance model should be broadened to become a more effective model, including other patch characteristics, particularly fragment size, and individual species traits (e. g., reproductive mode and habitat preference).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent global assessments have shown the limited coverage of protected areas across tropical biotas, fuelling a growing interest in the potential conservation services provided by anthropogenic landscapes. Here we examine the geographic distribution of biological diversity in the Atlantic Forest of South America, synthesize the most conspicuous forest biodiversity responses to human disturbances, propose further conservation initiatives for this biota, and offer a range of general insights into the prospects of forest species persistence in human-modified tropical forest landscapes worldwide. At the biome scale, the most extensive pre-Columbian habitats across the Atlantic Forest ranged across elevations below 800 masl, which still concentrate most areas within the major centers of species endemism. Unfortunately, up to 88% of the original forest habitat has been lost, mainly across these low to intermediate elevations, whereas protected areas are clearly skewed towards high elevations above 1200 masl. At the landscape scale, most remaining Atlantic Forest cover is embedded within dynamic agro-mosaics including elements such as small forest fragments, early-to-late secondary forest patches and exotic tree mono-cultures. In this sort of aging or long-term modified landscapes, habitat fragmentation appears to effectively drive edge-dominated portions of forest fragments towards an early-successional system, greatly limiting the long-term persistence of forest-obligate and forest-dependent species. However, the extent to which forest habitats approach early-successional systems, thereby threatening the bulk of the Atlantic Forest biodiversity, depends on both past and present landscape configuration. Many elements of human-modified landscapes (e.g. patches of early-secondary forests and tree mono-cultures) may offer excellent conservation opportunities, but they cannot replace the conservation value of protected areas and hitherto unprotected large patches of old-growth forests. Finally, the biodiversity conservation services provided by anthropogenic landscapes across Atlantic Forest and other tropical forest regions can be significantly augmented by coupling biodiversity corridor initiatives with biota-scale attempts to plug existing gaps in the representativeness of protected areas. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Roads and topography can determine patterns of land use and distribution of forest cover, particularly in tropical regions. We evaluated how road density, land use, and topography affected forest fragmentation, deforestation and forest regrowth in a Brazilian Atlantic Forest region near the city of Sao Paulo. We mapped roads and land use/land cover for three years (1962, 1981 and 2000) from historical aerial photographs, and summarized the distribution of roads, land use/land cover and topography within a grid of 94 non-overlapping 100 ha squares. We used generalized least squares regression models for data analysis. Our models showed that forest fragmentation and deforestation depended on topography, land use and road density, whereas forest regrowth depended primarily on land use. However, the relationships between these variables and forest dynamics changed in the two studied periods; land use and slope were the strongest predictors from 1962 to 1981, and past (1962) road density and land use were the strongest predictors for the following period (1981-2000). Roads had the strongest relationship with deforestation and forest fragmentation when the expansions of agriculture and buildings were limited to already deforested areas, and when there was a rapid expansion of development, under influence of Sao Paulo city. Furthermore, the past(1962)road network was more important than the recent road network (1981) when explaining forest dynamics between 1981 and 2000, suggesting a long-term effect of roads. Roads are permanent scars on the landscape and facilitate deforestation and forest fragmentation due to increased accessibility and land valorization, which control land-use and land-cover dynamics. Topography directly affected deforestation, agriculture and road expansion, mainly between 1962 and 1981. Forest are thus in peril where there are more roads, and long-term conservation strategies should consider ways to mitigate roads as permanent landscape features and drivers facilitators of deforestation and forest fragmentation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In fragmented landscapes, agroforest woodlots can potentially act as stepping stones facilitating movement between forest fragments. We assessed the influence of agroforest woodlots on bird distribution and diversity in the Atlantic forest region (SE Brazil), and also tested which categories of species can use different types of connection elements, and whether this use is influenced by the distance to large forest patches. We studied two fragmented landscapes, with and without stepping stones linking large fragments, and one forested landscape. Using a point count, a bird survey was undertaken in the fragmented landscapes in five different elements: large remnants (> 400 ha), agroforest woodlots (0.4-1.1 ha), small patches (0.5-7 ha), riparian corridor, and pasture areas (the main matrix). Generalist and open-area species were commonly observed in the agroforest system or other connection elements, whereas only a few forest species were present in these connections. For the latter species, the distance of woodlots to large patches was essential to determine their richness and abundance. Based on our results and data from literature, we suggest that there is an optimal relationship between the permeability of the matrix and the efficiency of stepping stones, which occurs at intermediate degrees of matrix resistance, and is species-dependent. Because the presence of agroforest system favors a higher richness of generalist species, they appeared to be more advantageous for conservation than the monoculture system; for this reason, they should be considered as a management alternative, particularly when the matrix permeability requirement is met.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we report on range use patterns of birds in relation to tropical forest fragmentation. Between 2003 and 2005, three understorey passerine species were radio-tracked in five locations of a fragmented and in two locations of a contiguous forest landscape on the Atlantic Plateau of Sao Paulo in south-eastern Brazil. Standardized ten-day home ranges of 55 individuals were used to determine influences of landscape pattern, season, species, sex and age. In addition, total observed home ranges of 76 individuals were reported as minimum measures of spatial requirements of the species. Further, seasonal home ranges of recaptured individuals were compared to examine site fidelity. Chiroxiphia caudata, but not Pyriglena leucoptera or Sclerurus scansor, used home ranges more than twice as large in the fragmented versus contiguous forest. Home range sizes of C. caudata differed in relation to sex, age, breeding status and season. Seasonal home ranges greatly overlapped in both C. caudata and in S. scansor. Our results suggest that one response by some forest bird species to habitat fragmentation entails enlarging their home ranges to include several habitat fragments, whereas more habitat-sensitive species remain restricted to larger forest patches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study describes and evaluates the horizontal and vertical structures of a lowland forest fragment on a hillock in the municipality of Silva Jardim, Rio de Janeiro State, Brazil (22 degrees 31`56 `` S and 42 degrees 20`46 `` W). Twenty plots (10x2m) totaling 0.5ha were laid out following the slope grade using DBH >= 5cm as the inclusion criterion. A total of 734 individuals were encountered, yielding a total density of 1468 ind./ha and a total basal area of 10783m(2). The richness values (129 species/41 families), Shannon-Wiener diversity (4.22) and equitability (0.87) indices indicated an accentuated floristic heterogeneity and low ecological dominance. Lauraceae, Myrtaceae, Fabaceae and Euphorbiaceae showed the greatest species richness, corroborating other studies that indicated these species as the most representative of Atlantic Forest areas in southeastern Brazil. The species with the greatest importance values (VI) were Aparisthmium cordatum, Guapira opposita, Lacistema pubescens, Xylopia sericea, Tapirira guianensis and Piptocarpha macropoda. The high diversity observed was influenced by earlier anthropogenic actions and by the current successional stage. The forest fragment studied demonstrated closer floristic similarity to areas inventoried in a close-by biological reserve than to fragments dispersed throughout the coastal plain. Similarities in soil type, degree of soil saturation and use-history of forest resources all support these relationships. The fragmented physiognomy of the central lowland in this region and the use-history of the landscape make these small remnant forest areas important in terms of establishing strategies for landscape restoration and species conservation.