975 resultados para ATLANTIC CONVERGENCE ZONE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Through study of observations and coupled climate simulations, it is argued that the mean position of the Inter-Tropical Convergence Zone (ITCZ) north of the equator is a consequence of a northwards heat transport across the equator by ocean circulation. Observations suggest that the hemispheric net radiative forcing of climate at the top of the atmosphere is almost perfectly symmetric about the equator, and so the total (atmosphere plus ocean) heat transport across the equator is small (order 0.2 PW northwards). Due to the Atlantic ocean’s meridional overturning circulation, however, the ocean carries significantly more heat northwards across the equator (order 0.4 PW) than does the coupled system. There are two primary consequences. First, atmospheric heat transport is southwards across the equator to compensate (0.2 PW southwards), resulting in the ITCZ being displaced north of the equator. Second, the atmosphere, and indeed the ocean, is slightly warmer (by perhaps 2 °C) in the northern hemisphere than in the southern hemisphere. This leads to the northern hemisphere emitting slightly more outgoing longwave radiation than the southern hemisphere by virtue of its relative warmth, supporting the small northward heat transport by the coupled system across the equator. To conclude, the coupled nature of the problem is illustrated through study of atmosphere–ocean–ice simulations in the idealized setting of an aquaplanet, resolving the key processes at work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intraseasonal and interannual variability of extreme wet and dry anomalies over southeastern Brazil and the western subtropical South Atlantic Ocean are investigated. Precipitation data are obtained from the Global Precipitation Climatology Project (GPCP) in pentads during 23 austral summers (December-February 1979/80-2001/02). Extreme wet (dry) events are defined according to 75th (25th) percentiles of precipitation anomaly distributions observed in two time scales: intraseasonal and interannual. The agreement between the 25th and 75th percentiles of the GPCP precipitation and gridded precipitation obtained from stations in Brazil is also examined. Variations of extreme wet and dry anomalies on interannual time scales are investigated along with variations of sea surface temperature (SST) and circulation anomalies. The South Atlantic SST dipole seems related to interannual variations of extreme precipitation events over southeastern Brazil. It is shown that extreme wet and dry events in the continental portion of the South Atlantic convergence zone (SACZ) are decoupled from extremes over the oceanic portion of the SACZ and there is no coherent dipole of extreme precipitation regimes between tropics and subtropics on interannual time scales. On intraseasonal time scales, the occurrence of extreme dry and wet events depends on the propagation phase of extratropical wave trains and consequent intensification (weakening) of 200-hPa zonal winds. Extreme wet and dry events over southeastern Brazil and subtropical Atlantic are in phase on intraseasonal time scales. Extreme wet events over southeastern Brazil and subtropical Atlantic are observed in association with low-level northerly winds above the 75th percentile of the seasonal climatology over central-eastern South America. Extreme wet events on intraseasonal time scales over southeastern Brazil are more frequent during seasons not classified as extreme wet or dry on interannual time scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work investigates the eproducibility of precipitation simulated with an atmospheric general circulation model (AGCM) forced by subtropical South Atlantic sea surface temperature (SST) anomalies. This represents an important test of the model prior to investigating the impact of SSTs on regional climate. A five-member ensemble run was performed using the National Center for Atmospheric Research (NCAR) Community Climate Model, version 3 (CCM3). The CCM3 was forced by observed monthly SST over the South Atlantic from 20 to 60 S. The SST dataset used is from the Hadley Centre covering the period of September 1949-October 2001; this covers more than 50 yr of simulation. A statistical technique is used to determine the reproducibility in the CCM3 runs and to assess potential predictability in precipitation. Empirical orthogonal function analysis is used to reconstruct the ensemble using the most reproducible forced modes in order to separate the atmospheric response to local SST forcing from its internal variability. Results for reproducibility show a seasonal dependence, with higher values during austral autumn and spring. The spatial distribution of reproducibility shows that the tropical atmosphere is dominated by the underlying SSTs while variations in the subtropical-extratropical regions are primarily driven by internal variability. As such, changes in the South Atlantic convergence zone (SACZ) region are mainly dominated by internal atmospheric variability while the ITCZ has greater external dependence, making it more predictable. The reproducibility distribution reveals increased values after the reconstruction of the ensemble.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 328 cm-long piston core (KODOS 02-01-02) collected from the northeast equatorial Pacific at 16°12'N, 125°59'W was investigated for eolian mass fluxes and grain sizes to test these proxies as a tool for the paleo-position of the Intertropical Convergence Zone (ITCZ). The eolian mass fluxes of the lower interval below 250 cm (15.5-7.6 Ma) are very uniform at 5 +/- 1 mg/cm**2/kyr, while those of the upper interval above 250 cm (from 7.6 Ma) are over 2 times higher than the lower interval at 12 +/- 1 mg/cm**2/kyr. The median grain size of the eolian dusts in the lower interval increases from 8.4 Phi to 8.0 Phi downward, while that of the upper interval varies in a narrow range from 8.8 Phi to 8.6 Phi. The determined values compare well in magnitude to those of central Pacific sediments for the upper interval and equatorial and southeast Pacific sediments for the lower interval. This result suggests a possibility that the study site had been under the influence of southeast trade winds at its earlier depositional period due to the northerly position of the ITCZ, and subsequently of the northeast trade winds for a later period when the upper sediments were deposited. This interpretation is consistent with a mineralogical and geochemical study published elsewhere that assigned the provenance of the study core dust to Central/South America for the lower interval and to Asia for the upper interval. This study suggests that the distinct differences in eolian mass flux and grain size observed across the ITCZ can be used to trace the paleo-latitude of the ITCZ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results of coupled high resolution global models (CGCMs) over South America are discussed. HiGEM1.2 and HadGEM1.2 simulations, with horizontal resolution of ~90 and 135 km, respectively, are compared. Precipitation estimations from CMAP (Climate Prediction Center—Merged Analysis of Precipitation), CPC (Climate Prediction Center) and GPCP (Global Precipitation Climatology Project) are used for validation. HiGEM1.2 and HadGEM1.2 simulated seasonal mean precipitation spatial patterns similar to the CMAP. The positioning and migration of the Intertropical Convergence Zone and of the Pacific and Atlantic subtropical highs are correctly simulated by the models. In HiGEM1.2 and HadGEM1.2, the intensity and locations of the South Atlantic Convergence Zone are in agreement with the observed dataset. The simulated annual cycles are in phase with estimations of rainfall for most of the six regions considered. An important result is that HiGEM1.2 and HadGEM1.2 eliminate a common problem of coarse resolution CGCMs, which is the simulation of a semiannual cycle of precipitation due to the semiannual solar forcing. Comparatively, the use of high resolution in HiGEM1.2 reduces the dry biases in the central part of Brazil during austral winter and spring and in most part of the year over an oceanic box in eastern Uruguay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms resulting in large daily rainfall events in Northeast Brazil are analyzed using data filtering to exclude periods longer than 30 days. Composites of circulation fields that include all independent events do not reveal any obvious forcing mechanisms as multiple patterns contribute to Northeast Brazil precipitation variability. To isolate coherent patterns, subsets of events are selected based on anomalies that precede the Northeast Brazil precipitation events at different locations. The results indicate that at 10 degrees S, 40 degrees W, the area of lowest annual rainfall in Brazil, precipitation occurs mainly in association with trailing midlatitude synoptic wave trains originating in either hemisphere. Closer to the equator at 5 degrees S, 37.5 degrees W, an additional convection precursor is found to the west, with a spatial structure consistent with that of a Kelvin wave. Although these two sites are located within only several hundred kilometers of each other and the midlatitude patterns that induce precipitation appear to be quite similar, the dates on which large precipitation anomalies occur at each location are almost entirely independent, pointing to separate forcing mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of the inter-El Nio (EN) variability on the moisture availability over Southeastern South America (SESA) is investigated. Also, an automatic tracking scheme was used to analyze the extratropical cyclones properties (system density - SD and central pressure - CP) in this region. During the austral summer period from 1977-2000, the differences for the upper-level wave train anomaly composites seem to determine the rainfall composite differences. In fact, the positive rainfall anomalies over most of the SESA domain during the strong EN events are explained by an upper-level cyclonic center over the tropics and an anticyclonic center over the eastern subtropical area. This pattern seems to contribute to upward vertical motion at 500 hPa and reinforcement of the meridional moisture transport from the equatorial Atlantic Ocean and western Amazon basin to the SESA region. These features may contribute to the positive SD and negative CP anomalies explaining part of the positive rainfall anomalies found there. On the other hand, negative rainfall anomalies are located in the northern part of SESA for the weak EN years when compared to those for the strong events. Also, positive anomalies are found in the southern part, albeit less intense. It was associated with the weakening of the meridional moisture transport from the tropics to the SESA that seems have to contributed with smaller SD and CP anomalies over the most part of subtropics, when compared to the strong EN years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examines the variability of the South America monsoon system (SAMS) over tropical South America (SA). The onset, end, and total rainfall during the summer monsoon are investigated using precipitation pentad estimates from the global precipitation climatology project (GPCP) 1979-2006. Likewise, the variability of SAMS characteristics is examined in ten Intergovernmental Panel on Climate Change (IPCC) global coupled climate models in the twentieth century (1981-2000) and in a future scenario of global change (A1B) (2081-2100). It is shown that most IPCC models misrepresent the intertropical convergence zone and therefore do not capture the actual annual cycle of precipitation over the Amazon and northwest SA. Most models can correctly represent the spatiotemporal variability of the annual cycle of precipitation in central and eastern Brazil such as the correct phase of dry and wet seasons, onset dates, duration of rainy season and total accumulated precipitation during the summer monsoon for the twentieth century runs. Nevertheless, poor representation of the total monsoonal precipitation over the Amazon and northeast Brazil is observed in a large majority of the models. Overall, MI-ROC3.2-hires, MIROC3.2-medres and MRI-CGCM3.2.3 show the most realistic representation of SAMS`s characteristics such as onset, duration, total monsoonal precipitation, and its interannual variability. On the other hand, ECHAM5, GFDL-CM2.0 and GFDL-CM2.1 have the least realistic representation of the same characteristics. For the A1B scenario the most coherent feature observed in the IPCC models is a reduction in precipitation over central-eastern Brazil during the summer monsoon, comparatively with the present climate. The IPCC models do not indicate statistically significant changes in SAMS onset and demise dates for the same scenario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is an assessment of frequency of extreme values (EVs) of daily rainfall in the city of Sao Paulo. Brazil, over the period 1933-2005, based on the peaks-over-threshold (POT) and Generalized Pareto Distribution (GPD) approach. Usually. a GPD model is fitted to a sample of POT Values Selected With a constant threshold. However. in this work we use time-dependent thresholds, composed of relatively large p quantities (for example p of 0.97) of daily rainfall amounts computed from all available data. Samples of POT values were extracted with several Values of p. Four different GPD models (GPD-1, GPD-2, GPD-3. and GDP-4) were fitted to each one of these samples by the maximum likelihood (ML) method. The shape parameter was assumed constant for the four models, but time-varying covariates were incorporated into scale parameter of GPD-2. GPD-3, and GPD-4, describing annual cycle in GPD-2. linear trend in GPD-3, and both annual cycle and linear trend in GPD-4. The GPD-1 with constant scale and shape parameters is the simplest model. For identification of the best model among the four models WC used rescaled Akaike Information Criterion (AIC) with second-order bias correction. This criterion isolates GPD-3 as the best model, i.e. the one with positive linear trend in the scale parameter. The slope of this trend is significant compared to the null hypothesis of no trend, for about 98% confidence level. The non-parametric Mann-Kendall test also showed presence of positive trend in the annual frequency of excess over high thresholds. with p-value being virtually zero. Therefore. there is strong evidence that high quantiles of daily rainfall in the city of Sao Paulo have been increasing in magnitude and frequency over time. For example. 0.99 quantiles of daily rainfall amount have increased by about 40 mm between 1933 and 2005. Copyright (C) 2008 Royal Meteorological Society

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regional Climate Model version 3 (RegCM3) simulations of 17 summers (1988-2004) over part of South America south of 5 degrees S were evaluated to identify model systematic errors. Model results were compared to different rainfall data sets (Climate Research Unit (CRU), Climate Prediction Center (CPC), Global Precipitation Climatology Project (GPCP), and National Centers for Environmental Prediction (NCEP) reanalysis), including the five summers mean (1998-2002) precipitation diurnal cycle observed by the Tropical Rainfall Measuring Mission (TRMM)-Precipitation Radar (PR). In spite of regional differences, the RegCM3 simulates the main observed aspects of summer climatology associated with the precipitation (northwest-southeast band of South Atlantic Convergence Zone (SACZ)) and air temperature (warmer air in the central part of the continent and colder in eastern Brazil and the Andes Mountains). At a regional scale, the main RegCM3 failures are the underestimation of the precipitation in the northern branch of the SACZ and some unrealistic intense precipitation around the Andes Mountains. However, the RegCM3 seasonal precipitation is closer to the fine-scale analyses (CPC, CRU, and TRMM-PR) than is the NCEP reanalysis, which presents an incorrect north-south orientation of SACZ and an overestimation of its intensity. The precipitation diurnal cycle observed by TRMM-PR shows pronounced contrasts between Tropics and Extratropics and land and ocean, where most of these features are simulated by RegCM3. The major similarities between the simulation and observation, especially the diurnal cycle phase, are found over the continental tropical and subtropical SACZ regions, which present afternoon maximum (1500-1800 UTC) and morning minimum (0900-1200 UTC). More specifically, over the core of SACZ, the phase and amplitude of the simulated precipitation diurnal cycle are very close to the TRMM-PR observations. Although there are amplitude differences, the RegCM3 simulates the observed nighttime rainfall in the eastern Andes Mountains, over the Atlantic Ocean, and also over northern Argentina. The main simulation deficiencies are found in the Atlantic Ocean and near the Andes Mountains. Over the Atlantic Ocean the convective scheme is not triggered; thus the rainfall arises from the grid-scale scheme and therefore differs from the TRMM-PR. Near the Andes, intense (nighttime and daytime) simulated precipitation could be a response of an incorrect circulation and topographic uplift. Finally, it is important to note that unlike most reported bias of global models, RegCM3 does not trigger the moist convection just after sunrise over the southern part of the Amazon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The South American Monsoon System (SAMS) is characterised by intense convective activity and precipitation during austral summer. This study investigates changes in the onset, demise and duration of SAMS during 1948-2008. The results show a significant change in these characteristics in the early 1970s. Onset becomes steadily earlier from 1948 to early 1970s and has occurred earlier than 23-27 October after 1972-1973. Demise dates have remained later than 21-25 April after the mid-to-late 1970s. SAMS duration shows a statistical changepoint in the summer of 1971-1972 such that the mean duration was similar to 170 days (1948-1972) and 195 days (1972-1982). Vertically integrated moisture flux is used to diagnose changes in mean state and reveal statistically significant increases over South America after 1971-1972. Copyright. (C) 2010 Royal Meteorological Society

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Convectively coupled Kelvin waves over the South American continent are examined through the use of temporal and spatial filtering of reanalysis, satellite, and gridded rainfall data. They are most prominent from November to April, the season analyzed herein. The following two types of events are isolated: those that result from preexisting Kelvin waves over the eastern Pacific Ocean propagating into the continent, and those that apparently originate over Amazonia, forced by disturbances propagating equatorward from central and southern South America. The events with precursors in the Pacific are mainly upper-level disturbances, with almost no signal at the surface. Those events with precursors over South America, on the other hand, originate as upper-level synoptic wave trains that pass over the continent and resemble the ""cold surges`` documented by Garreaud and Wallace. As the wave train propagates over the Andes, it induces a southerly low-level wind that advects cold air to the north. Precipitation associated with a cold front reaches the equator a few days later and subsequently propagates eastward with the characteristics of a Kelvin wave. The structures of those waves originating over the Pacific are quite similar to those originating over South America as they propagate to eastern South America and into the Atlantic. South America Kelvin waves that originate over neither the Pacific nor the midlatitudes of South America can also be identified. In a composite sense, these form over the eastern slope of the Andes Mountains, close to the equator. There are also cases of cold surges that reach the equator yet do not form Kelvin waves. The interannual variability of the Pacific-originating events is related to sea surface temperatures in the central-eastern Pacific Ocean. When equatorial oceanic conditions are warm, there tends to be an increase in the number of disturbances that reach South America from the Pacific.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work has investigated the impact of three different low-frequency sea surface temperature (SST) variability modes located in the Indian and the Pacific Oceans on the interannual variability of the South American Monsoon System (SAMS) using observed and numerical data. Rotated Empirical Orthogonal Function (REOF) analysis and numerical simulations with a General Circulation Model (GCM) were used. One of the three SST variability modes is located close to southeastern Africa. According to the composites, warmer waters over this region are associated with enhanced austral summer precipitation over the sub-tropics. The GCM is able to reproduce this anomalous precipitation pattern, simulating a wave train emanating from the Indian Ocean towards South America (SA). A second SST variability mode was located in the western Pacific Ocean. REOF analysis indicates that warmer waters are associated with drought conditions over the South Atlantic Convergence Zone (SACZ) and enhanced precipitation over the sub-tropics. The GCM indicates that the warmer waters over Indonesia generate drought conditions over tropical SA through a Pacific South America-like (PSA) wave pattern emanating from the western Pacific. Finally, the third SST variability mode is located over the southwestern South Pacific. The composites indicate that warmer waters are associated with enhanced precipitation over the SACZ and drought conditions over the sub-tropics. There is a PSA-like wave train emanating from Indonesia towards SA, and another crossing the Southern Hemisphere in the extra-tropics, probably associated with transient activity. The GCM is able to reproduce the anomalous precipitation pattern, although it is weaker than observed. The PSA-like pattern is simulated, but the model fails in reproducing the extra-tropical wave activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The State of Sao Paulo is the richest in Brazil, responsible for over 30% of the Brazilian gross rate. It has a population of around 30 million and its economy is based on agriculture and industrial products. Any change in climate can have a profound influence on the socio-economics of the State. In order to determine changes in total and extreme rainfall over Sao Paulo State, climate change indices derived from daily precipitation data were calculated using specially designed software. Maps of trends for a subset of 59 rain gauge stations were analysed for the period 1950-1999 and also for a subset of this period, 1990-1999, representing more recent climate. A non-parametric Mann-Kendall test was applied to the time series. Maps of trends for six annual precipitation indices (annual total precipitation (PRCPTOT), very heavy precipitation days (R20mm), events greater than the 95th percentile (R95p), maximum five days precipitation total (RX5day), the length of the largest wet spell (CWD) and the length of the largest dry spell (CDD)) were analysed for the entire period. These exhibited statistically significant trends associated with a wetter climate. A significant increase in PRCPTOT, associated with very heavy precipitation days, were observed at more than 45% of the rain gauge stations. The Mann-Kendall test identified that the positive trend in PRCPTOT is possibly related to the increase in the R95p and R20mm indices. Therefore, the results suggest that there has been a change in precipitation intensity. In contrast, the indices for the more recent shorter time series are significantly different to the longer term indices. The results indicate that intense precipitation is becoming concentrated in a few days and spread over the period when the CDD and R20mm indices show positive trends, while negative ones are seen in the RX5day index. The trends found could be related to many anthropogenic aspects such as biomass burning aerosols and land use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[1] This work examines the main sources of moisture over Central Brazil and La Plata Basin during the year through a new Lagrangian diagnosis method which identifies the humidity contributions to the moisture budget over a region. This methodology computes budgets of evaporation minus precipitation by calculating changes in the specific humidity along back-trajectories for the previous 10 d. The origin of all air masses residing over each region was tracked during a period of 5 years (2000-2004). These regions were selected because they coincide with two centers of action of a known dipole precipitation variability mode observed in different temporal scales (from intra seasonal up to inter decadal timescales) and are related to the climatic variability of the South American Monsoon System. The results suggested the importance of the tropical south Atlantic as a moisture source for Central Brazil, and of recycling for La Plata basin. It seems that the Tropical South Atlantic plays an important role as a moisture source for Central Brazil and La Plata basin along the year, particularly during the austral summer. The north Atlantic is also an additional source for both regions during the austral summer.