978 resultados para ATHLETIC PERFORMANCE
Resumo:
The current dominance of African runners in long-distance running is an intriguing phenomenon that highlights the close relationship between genetics and physical performance. Many factors in the interesting interaction between genotype and phenotype (eg, high cardiorespiratory fitness, higher hemoglobin concentration, good metabolic efficiency, muscle fiber composition, enzyme profile, diet, altitude training, and psychological aspects) have been proposed in the attempt to explain the extraordinary success of these runners. Increasing evidence shows that genetics may be a determining factor in physical and athletic performance. But, could this also be true for African long-distance runners? Based on this question, this brief review proposed the role of genetic factors (mitochondrial deoxyribonucleic acid, the Y chromosome, and the angiotensin-converting enzyme and the alpha-actinin-3 genes) in the amazing athletic performance observed in African runners, especially the Kenyans and Ethiopians, despite their environmental constraints.
Resumo:
The aim of this study was to determine potential relationships between anthropometric parameters and athletic performance with special consideration to repeated-sprint ability (RSA). Sixteen players of the senior male Qatar national soccer team performed a series of anthropometric and physical tests including countermovement jumps without (CMJ) and with free arms (CMJwA), straight-line 20 m sprint, RSA (6 × 35 m with 10 s recovery) and incremental field test. Significant (P < 0.05) relationships occurred between muscle-to-bone ratio and both CMJs height (r ranging from 0.56 to 0.69) as well as with all RSA-related variables (r < -0.53 for sprinting times and r = 0.54 for maximal sprinting speed) with the exception of the sprint decrement score (Sdec). The sum of six skinfolds and adipose mass index were largely correlated with Sdec (r = 0.68, P < 0.01 and r = 0.55, P < 0.05, respectively) but not with total time (TT, r = 0.44 and 0.33, P > 0.05, respectively) or any standard athletic tests. Multiple regression analyses indicated that muscular cross-sectional area for mid-thigh, adipose index, straight-line 20 m time, maximal sprinting speed and CMJwA are the strongest predictors of Sdec (r(2) = 0.89) and TT (r(2) = 0.95) during our RSA test. In the Qatar national soccer team, players' power-related qualities and RSA are associated with a high muscular profile and a low adiposity. This supports the relevance of explosive power for the soccer players and the larger importance of neuromuscular qualities determining the RSA.
Resumo:
The aim of the study was to determine the effect of clenbuterol on the anaerobic-threshold of horses on a tread-mill with increasing physical stress, measuring heart rate (HR) and blood levels of lactate, glucose, and insulin. Twelve Arabian horses. were submitted to two physical tests separated by a 10-day interval. Clenbuterol (CL) at 0.8 mu g/kg or saline (control-C) was administered intravenously 30 minutes, before the test. The treadmill exercise test consisted of an initial warmup followed by a gradually increasing effort. There was no statistical difference in either V-2 or V-4 (velocity at which plasma lactate concentration reached 4 and 2 mmol/L, respectively) between the two-experimental groups. For the CL group, V-200, V-180, V-160, and V-140 (velocity at which the rate heart is 140, 160, 180, and 200 beats/minute, respectively) decreased significantly. At rest as well as times 4, 6, and 10 minutes, insulin levels were higher in the group that recieved clenbuterol (P < .05). Contrary to what was expected, apparently, there was no improvement in aerobic metabolism in animals when given a therapeutic dose of the bronchodilator. The elevated heart rate observed could have been attributable to the stimulation of cardiac beta(1) adrenoceptors and the increased insulin levels to the stimulation of pancreatic beta(2) receptors.
Resumo:
Researchers largely agree that there is a positive relationship between achievement motivation and athletic performance, which is why the achievement motive is viewed as a potential criterion for talent. However, the underlying mechanism behind this relationship remains unclear. In talent and performance models, main effect, mediator and moderator models have been suggested. A longitudinal study was carried out among 140 13-year-old football talents, using structural equation modelling to determine which model best explains how hope for success (HS) and fear of failure (FF), which are the aspects of the achievement motive, motor skills and abilities that affect performance. Over a period of half a year, HS can to some extent explain athletic performance, but this relationship is not mediated by the volume of training, sport-specific skills or abilities, nor is the achievement motive a moderating variable. Contrary to expectations, FF does not explain any part of performance. Aside from HS, however, motor abilities and in particular skills also predict a significant part of performance. The study confirms the widespread assumption that the development of athletic performance in football depends on multiple factors, and in particular that HS is worth watching in the medium term as a predictor of talent.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
The main goal of training activities is to improve motor performance. After strenuous workouts, it is physiological to experience fatigue, which relieves within two weeks, and then induce an improvement in motor capacities. An overtraining syndrome is diagnosed when fatigue is postponed beyond two weeks, and affects mainly endurance athletes. It is a condition of chronic fatigue, underperformance and an increased vulnerability to infection leading to recurrent infections. The whole observed spectrum of symptoms is physiological, psychological, endocrinogical and immunological. All play a role in the failure to recover. Monitoring of athletes activities helps to prevent the syndrome with days with no sports. Rest, patience and empathy are the only ways of treatment options.
Resumo:
Several studies (on an inclined platform or with special shoes) have reported improved jump performance when the ankle was in a dorsiflexion (DF) position. The present study aims to test whether shoes inducing moderate DF modify vertical jump performance and energy cost. Twenty-one young, healthy female subjects (30 +/- 6 yr, 58 +/- 6 kg, O2max 45 +/- 3 mLxkg-1xmin-1, mean +/- SD) participated in the study. Jump performance was tested with subjects either wearing 4 degrees DF or standard (S) shoes. The jump tests (performed on a force platform) consisted of squat jump (SJ), countermovement jump (CMJ), and continuous jumps (CJ) during 15 seconds. Measured parameters were jump height, speed at take off, and maximal and average power. Oxygen uptake was measured on a treadmill while subjects ran at 95% of the anaerobic threshold during a 7-minute steady-state period. As compared with S shoes, DF shoes significantly improved the height of SJ (31 +/- 4 cm vs. 34 +/- 4 cm, p = 0.0001), CMJ (32 +/- 4 cm vs. 34 +/- 4 cm, p = 0.0004), and CJ (17.5 +/- 4.2 cm vs. 22.0 +/- 6.0 cm, p = 0.0001). Speed at take off was also significantly higher. Mean power significantly increased in SJ and CJ but not in CMJ. Oxygen uptake was not different between conditions (p = 0.40). Dorsiflexion shoes induce a significant increase in jump performance. These results are in accordance with the concept that a DF of the ankle may induce an increase of the length and strength of the triceps surae (higher torque). However, wearing DF shoes did not require more energy during running. Dorsiflexion shoes could be used to increase jump performance in several sports such as volleyball in which jump height is essential.
Resumo:
OBJECTIVE: The aim of this study was to determine whether V˙O(2) kinetics and specifically, the time constant of transitions from rest to heavy (τ(p)H) and severe (τ(p)S) exercise intensities, are related to middle distance swimming performance. DESIGN: Fourteen highly trained male swimmers (mean ± SD: 20.5 ± 3.0 yr; 75.4 ± 12.4 kg; 1.80 ± 0.07 m) performed an discontinuous incremental test, as well as square wave transitions for heavy and severe swimming intensities, to determine V˙O(2) kinetics parameters using two exponential functions. METHODS: All the tests involved front-crawl swimming with breath-by-breath analysis using the Aquatrainer swimming snorkel. Endurance performance was recorded as the time taken to complete a 400 m freestyle swim within an official competition (T400), one month from the date of the other tests. RESULTS: T400 (Mean ± SD) (251.4 ± 12.4 s) was significantly correlated with τ(p)H (15.8 ± 4.8s; r=0.62; p=0.02) and τ(p)S (15.8 ± 4.7s; r=0.61; p=0.02). The best single predictor of 400 m freestyle time, out of the variables that were assessed, was the velocity at V˙O(2max)vV˙O(2max), which accounted for 80% of the variation in performance between swimmers. However, τ(p)H and V˙O(2max) were also found to influence the prediction of T400 when they were included in a regression model that involved respiratory parameters only. CONCLUSIONS: Faster kinetics during the primary phase of the V˙O(2) response is associated with better performance during middle-distance swimming. However, vV˙O(2max) appears to be a better predictor of T400.
Resumo:
There is anecdotal evidence that athletes use the banned substance Synacthen because of its perceived benefit with its associated rise in cortisol. To test the performance-enhancing effects of Synacthen, eight trained cyclists completed two, 2-day exercise sessions separated by 7-10 days. On the first day of each 2-day exercise session, subjects received either Synacthen (0.25 mg, TX) or placebo (PLA) injection. Performance was assessed by a 20-km time trial (TT) after a 90-min fatigue period on day 1 and without the fatiguing protocol on day 2. Plasma androgens and ACTH concentrations were measured during the exercise bouts as well as the rate of perceived exertion (RPE). Spot urines were analyzed for androgens and glucocorticoids quantification. Basal plasma hormones did not differ significantly between PLA and TX groups before and 24 h after the IM injection (P > 0.05). After TX injection, ACTH peaked at 30 min and hormone profiles were significantly different compared to the PLA trial (P < 0.001). RPE increased significantly in both groups as the exercise sessions progressed (P < 0.001) but was not influenced by treatment. The time to completion of the TT was not affected on both days by Synacthen treatment. In the present study, a single IM injection of synthetic ACTH did not improve either acute or subsequent cycling performance and did not influence perceived exertion. The investigated urinary hormones did not vary after treatment, reinforcing the difficulty for ACTH abuse detection.
Resumo:
Alcohol (ethanol) is consumed on a daily basis by a large fraction of the population, and in many countries, light-to-moderate alcohol consumption is considered as an integral part of the diet. Although the relationship between alcohol intake and obesity is controversial, regular consumption of alcohol, through its effects in suppressing fat oxidation, is regarded as a risk factor for weight gain, increased abdominal obesity and hypertriglyceridemia. Indeed, alcohol taken with a meal leads to an increase in postprandial lipemia-an effect on postprandial metabolism that is opposite to that observed with exercise. Furthermore, although regular exercise training and/or a preprandial exercise session reduce postprandial lipemia independently of alcohol ingestion, the exercise-induced reduction in postprandial lipemia is nonetheless less pronounced when alcohol is also consumed with the meal. Whether or not alcohol influences exercise and sport performance remains contradictory. It is believed that alcohol has deleterious effects on the performance, although it may contribute to reduce pain and anxiety. The alcohol effects on sports performance depend on the type and dosage of alcohol, acute vs chronic administration, the alcohol elimination rate as well as the type of exercise.
Resumo:
AIM: The aim of this study was to investigate the effect of an acute small ethanol (EtOH) dose (0.5 ml EtOH/kg fat-free mass, combined with carbohydrate) in a drink on endurance performance of trained cyclists. METHODS: Thirteen well-trained male cyclists took part in this study. A 60-min cycling endurance performance test (time trial) was performed in a calorimetric chamber after drinking an EtOH (30 +/- 1.8 ml) or a non-EtOH control (C) drink. RESULTS: Overall, EtOH induced a significant decrease in the average cycling power output (PO) (EtOH: 233 +/- 23 W versus C: 243 +/- 24 W, P < 0.01). The time course of mechanical PO showed an early decrease during the EtOH trial as compared to C (P < 0.01). Due to the lower PO, oxygen consumption, carbon dioxide production and glucose oxidation were significantly lower (P < 0.05) as compared to C. Relative to PO, heart rate response and ratings of perceived exertion (RPE) were increased by EtOH as compared to C (P < 0.05). In contrast, EtOH did not influence gross work efficiency, glycaemia and blood lactate concentration. CONCLUSIONS: These results show that the acute low dose of EtOH decreased endurance performance. An increase of cardio-vascular strain and psychobiological mechanisms may explain this decrease of endurance performance.
Resumo:
The aim of this study was to test the short-term effects of using hypoxic rooms before a simulated running event. Thirteen subjects (29 +/- 4 years) lived in a hypoxic dormitory (1,800 m) for either 2 nights (n = 6) or 2 days + nights (n = 7) before performing a 1,500-m treadmill test. Performance, expired gases, and muscle electrical activity were recorded and compared with a control session performed 1 week before or after the altitude session (random order). Arterial blood samples were collected before and after altitude exposure. Arterial pH and hemoglobin concentration increased (p < 0.05) and PCO2 decreased (p < 0.05) upon exiting the room. However, these parameters returned (p < 0.05) to basal levels within a few hours. During exercise, mean ventilation (VE) was higher (p < 0.05) after 2 nights or days + nights of moderate altitude exposure (113.0 +/- 27.2 L.min) than in the control run (108.6 +/- 27.8 L.min), without any modification in performance (360 +/- 45 vs. 360 +/- 42 seconds, respectively) or muscle electrical activity. This elevated VE during the run after the hypoxic exposure was probably because of the subsistence effects of the hypoxic ventilatory response. However, from a practical point of view, although the use of a normobaric simulating altitude chamber exposure induced some hematological adaptations, these disappeared within a few hours and failed to provide any benefit during the subsequent 1,500-m run.
Resumo:
New methods and devices for pursuing performance enhancement through altitude training were developed in Scandinavia and the USA in the early 1990s. At present, several forms of hypoxic training and/or altitude exposure exist: traditional 'live high-train high' (LHTH), contemporary 'live high-train low' (LHTL), intermittent hypoxic exposure during rest (IHE) and intermittent hypoxic exposure during continuous session (IHT). Although substantial differences exist between these methods of hypoxic training and/or exposure, all have the same goal: to induce an improvement in athletic performance at sea level. They are also used for preparation for competition at altitude and/or for the acclimatization of mountaineers. The underlying mechanisms behind the effects of hypoxic training are widely debated. Although the popular view is that altitude training may lead to an increase in haematological capacity, this may not be the main, or the only, factor involved in the improvement of performance. Other central (such as ventilatory, haemodynamic or neural adaptation) or peripheral (such as muscle buffering capacity or economy) factors play an important role. LHTL was shown to be an efficient method. The optimal altitude for living high has been defined as being 2200-2500 m to provide an optimal erythropoietic effect and up to 3100 m for non-haematological parameters. The optimal duration at altitude appears to be 4 weeks for inducing accelerated erythropoiesis whereas <3 weeks (i.e. 18 days) are long enough for beneficial changes in economy, muscle buffering capacity, the hypoxic ventilatory response or Na(+)/K(+)-ATPase activity. One critical point is the daily dose of altitude. A natural altitude of 2500 m for 20-22 h/day (in fact, travelling down to the valley only for training) appears sufficient to increase erythropoiesis and improve sea-level performance. 'Longer is better' as regards haematological changes since additional benefits have been shown as hypoxic exposure increases beyond 16 h/day. The minimum daily dose for stimulating erythropoiesis seems to be 12 h/day. For non-haematological changes, the implementation of a much shorter duration of exposure seems possible. Athletes could take advantage of IHT, which seems more beneficial than IHE in performance enhancement. The intensity of hypoxic exercise might play a role on adaptations at the molecular level in skeletal muscle tissue. There is clear evidence that intense exercise at high altitude stimulates to a greater extent muscle adaptations for both aerobic and anaerobic exercises and limits the decrease in power. So although IHT induces no increase in VO(2max) due to the low 'altitude dose', improvement in athletic performance is likely to happen with high-intensity exercise (i.e. above the ventilatory threshold) due to an increase in mitochondrial efficiency and pH/lactate regulation. We propose a new combination of hypoxic method (which we suggest naming Living High-Training Low and High, interspersed; LHTLHi) combining LHTL (five nights at 3000 m and two nights at sea level) with training at sea level except for a few (2.3 per week) IHT sessions of supra-threshold training. This review also provides a rationale on how to combine the different hypoxic methods and suggests advances in both their implementation and their periodization during the yearly training programme of athletes competing in endurance, glycolytic or intermittent sports.
Resumo:
Introduction Our institution (University hospital) is encouraging physical activities for health through various popular sporting events in the city of Lausanne, the biggest of which is a road race of 2, 4, 10 and 20km. Objective To create an efficient and sustainable training program in preparation of the race for a group of motivated hospital employees without any prior experience with structured training and to identifying the benefits and limitations encountered.. Methods Subjects of various fitness levels were recruited by add and agreed to undergo lab and field testing before a 12-week 3 times/week running program, based on maximal aerobic speed (MAS-30/30 sec intervals), running technique exercises and endurance training. The interval session was the only one supervised. Their goal was the 10km (11 subjects) and the 20km (6 subjects). Results A group of 17 subjects (7 male and 10 female), mean age 36.6±7.3 years, VO2max 44.0±5.5 ml/kg/min, filed test interval MAS 15.1±2.4 km/h started the program. 2 were lost because of injury (while skiing). Adherence to interval sessions was excellent, although 3 weekly training sessions proved to be difficult for most of the subjects. Performance in the race was satisfying for all of them, 6/7 subjects having improved their running time from the previous year, the others participated for the first time and 7/8 completed the race satisfyingly, one DNF-ed because of sinusitis. Repeat MAS field test was available for 6 subjects, who improved by 5.9% (p<0.01). Subjectively, all of the participants were very satisfied with improvement, interaction with colleagues from various professions, and with self achievement and confidence. Conclusions Implementation of a structured training program for recreational or non-athletes can be very successful in creating a better self-confidence, a better working environment inside a hospital facility and obviously in improvement of physical fitness and athletic performance. Above all, it can only encourage health institutions to promote the health of their own employees through physical activity, which can allow people to connect through sports. As a result, subjects in this study tend to encourage other employees to be more active and are hungry for more advice and continued offers for physical activities benefiting both them and the institution through better efficiency at work and less absenteeism common to more active people.